Open Access Open Access  Restricted Access Subscription Access


Comparative analyses of salivary proteins from the facultative symbiont-infected and uninfected Tetranychus truncatus

Yu-Xi Zhu, Yue-Ling Song, Hai-Jian Huang, Dian-Shu Zhao, Xue Xia, Kun Yang, Yi-Jia Lu, Xiao-Yue Hong


Salivary proteins of herbivorous insects play a central role in plant-insect interactions. Spider mite Tetranychus truncatus is a polyphagous agricultural pest harboring various bacterial symbionts. However, whether endosymbionts infection in spider mite alters the host saliva protein remains largely unknown. Here, by using shotgun LC-MS/MS analysis, we identified and characterized the components of saliva in Wolbachia-Spiroplasma infected and uninfected T. truncatus. In total, 177 putative salivary proteins were identified. The function of many proteins remains unknown, while in numerous cases belong to catalytic activity and binding proteins. The saliva enzymes included oxidoreductase, hydratase, isomerase, transferase, protease, esterase, ribonuclease, kinase, lyase and phosphorylase. Other proteins, such as ATP-binding, actin, heat shock proteins and vitellogenin were also detected in the T. truncatus saliva. In addition, we found some of the saliva proteins are mite strain-specific salivary proteins—14 proteins were only found in Wolbachia-Spiroplasma infected spider mite, and 6 proteins were only found in Wolbachia-Spiroplasma uninfected spider mite. Overall, this is the first research to identify and characterize the proteins in saliva of facultative symbionts-infected and uninfected spider mites, T. truncatus. Our novel findings revealed that the presence of bacterial symbionts affected the saliva components of spider mites, opening the path for future studies.


Tetranychidae, salivary proteins, Shotgun LC-MS/MS, plant-herbivore interaction


Acevedo, F.E., Peiffer, M., Tan, C.W., Stanley, B.A., Stanley, A., Wang, J., Jones, A.G., Hoover, K., Rosa, C., Luthe, D. & Felton, G.W. (2017) Fall armyworm-associated gut bacteria modulate plant defense responses. Molecular Plant-Microbe Interactions, 30(2), 127–137.

Bensoussan, N., Santamaria, M.E., Zhurov, V., Diaz, I., Grbic, M. & Grbic, V. (2016) Plant-herbivore interaction: dissection of the cellular pattern of Tetranychus urticae feeding on the host plant. Frontiers in Plant Science, 7(7), 1–13.

Carolan, J.C., Caragea, D., Reardon, K.T., Mutti, N.S., Dittmer, N., Pappan, K., Cui, F., Castaneto, M., Poulain, J., Dossat, C., Tagu, D., Reese, J.C., Reeck, G.R., Wilkinson, T.L. & Edwards, O.R. (2011) Predicted effector molecules in the salivary secretome of the pea aphid (Acyrthosiphon pisum): a dual transcriptomic/proteomic approach. Journal of Proteome Research, 10(4), 1505–1518.

Chaudhary, R., Atamian, H.S., Shen, Z., Briggs, S.P. & Kaloshian, I. (2015) Potato aphid salivary proteome: enhanced salivation using resorcinol and identification of aphid phosphoproteins. Journal of Proteome Research, 14(4), 1762–1778.

Chung, S.H., Rosa, C., Scully, E.D., Peiffer, M., Tooker, J.F., Hoover, K., Luthe, D.S. & Felton, G.W. (2013) Herbivore exploits orally secreted bacteria to suppress plant defenses. Proceedings of the National Academy of Sciences of the United States of America, 110(39), 15728–15733.

Cooper, W.R., Dillwith, J.W. & Puterka, G.J. (2011) Comparisons of salivary proteins from five aphid (Hemiptera: Aphididae) species. Environmental Entomology, 40(1), 151–156.

Cox, J. & Mann, M. (2008) MaxQuant enables high peptide identification rates, individualized ppb-range mass accuracies and proteome-wide protein quantification. Nature Biotechnology, 26(12), 1367.

Cristofoletti, P.T., Mendonça de Sousa, F.A., Rahbe, Y. & Terra, W.R. (2006) Characterization of a membrane-bound aminopeptidase purified from Acyrthosiphon pisum midgut cells. FEBS Journal, 273(24), 5574–5588.

Day, B., Henty, J.L., Porter, K.J. & Staiger, C.J. (2011) The pathogen-actin connection: a platform for defense signaling in plants. Annual Review of Phytopathology, 49(1), 483–506.

de la Paz Celorio-Mancera, M., Ytterberg, A.J., Rutishauser, D., Janz, N. & Zubarev, R.A. (2015) Effect of host plant and immune challenge on the levels of chemosensory and odorant-binding proteins in caterpillar salivary glands. Insect Biochemistry and Molecular Biology, 61, 34–45.

De Vos, M. & Jander, G. (2009) Myzus persicae (green peach aphid) salivary components induce defence responses in Arabidopsis thaliana. Plant Cell and Environment, 32(11), 1548–1560.

Elzinga, D.A. & Jander, G. (2013) The role of protein effectors in plant–aphid interactions. Current Opinion in Plant Biology, 16(4), 451–456.

Grbić, M., Van Leeuwen, T., Clark, R.M., Rombauts, S., Rouzé, P., Grbić, V., Osborne, E.J., Dermauw, W., Ngoc, P.C.T., Ortego, F., Hernández-Crespo, P., Diaz, I., Martinez, M., Navajas, M., Sucena, É., Magalhães, S., Nagy, L., Pace, R.M., Djuranović, S., Smagghe, G., Iga, M., Christiaens, O., Veenstra, J.A., Ewer, J., Villalobos, R.M., Hutter, J.L., Hudson, S.D., Velez, M., Yi, S.V., Zeng, J., Pires-Da Silva, A., Roch, F., Cazaux, M., Navarro, M., Zhurov, V., Acevedo, G., Bjelica, A., Fawcett, J.A., Bonnet, E., Martens, C., Baele, G., Wissler, L., Sanchez-Rodriguez, A., Tirry, L., Blais, C., Demeestere, K., Henz, S.R., Gregory, T.R., Mathieu, J., Verdon, L., Farinelli, L., Schmutz, J., Lindquist, E., Feyereisen, R. & Van De Peer, Y. (2011) The genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature, 479(7374), 487–492.

Haegeman, A., Mantelin, S., Jones, J.T. & Gheysen, G. (2012) Functional roles of effectors of plant-parasitic nematodes. Gene, 492(1), 19–31.

Hardham, A.R., Takemoto, D. & White, R.G. (2008) Rapid and dynamic subcellular reorganization following mechanical stimulation of Arabidopsis epidermal cells mimics responses to fungal and oomycete attack. BMC Plant Biology, 8(1), 63.

Harmel, N., Létocart, E., Cherqui, A., Giordanengo, P., Mazzucchelli, G., Guillonneau, F., De Pauw, E., Haubruge, E. & Francis, F. (2008) Identification of aphid salivary proteins: a proteomic investigation of Myzus persicae. Insect Molecular Biology, 17(2), 165–174.

Hattori, M., Komatsu, S., Noda, H., Matsumoto, Y. (2015) Proteome analysis of watery saliva secreted by green rice leafhopper, Nephotettix cincticeps. PLoS One, 10(4), e0123671.

Huang, H.J., Liu, C.W., Huang, X.H., Zhou, X., Zhuo, J.C., Zhang, C.X. & Bao, Y.Y. (2016) Screening and functional analyses of Nilaparvata lugens salivary proteome. Journal of Proteome Research, 15(6), 1883–1896.

Jonckheere, W., Dermauw, W., Zhurov, V., Wybouw, N., Van den Bulcke, J., Villarroel, C.A., Greenhalgh, R., Grbić, M., Schuurink, R.C., Tirry, L., Baggerman, G., Clark, R.M., Kant, M.R., Vanholme, B., Menschaert, G. & Van Leeuwen, T. (2016) The salivary protein repertoire of the polyphagous spider mite Tetranychus urticae: a quest for effectors. Molecular and Cellular Proteomics, 15(12), 3594–3613.

Koenig, C., Bretschneider, A., Heckel, D.G., Grosse-Wilde, E., Hansson, B.S. & Vogel, H. (2015) The plastic response of Manduca sexta to host and non-host plants. Insect Biochemistry and Molecular Biology, 63, 72–85.

Konishi, H., Noda, H., Tamura, Y. & Hattori, M. (2009) Proteomic analysis of the salivary glands of the rice brown planthopper, Nilaparvata lugens (Stål) (Homoptera: Delphacidae). Applied Entomology and Zoology, 44(4), 525–534.

Li, X.Y., Fan, D.D., Zhang, W., Liu, G.C., Zhang, L., Zhao, L., Fang, X.D., Chen, L., Dong, Y., Chen, Y., Ding, Y., Zhao, R.P., Feng, M.J., Zhu, Y.B., Feng, Y., Jiang, X.T., Zhu, D.Y., Xiang, H., Feng, X.K., Li, S.C., Wang, J., Zhang, G.J., Kronforst, M.R. & Wang, W. (2015) Outbred genome sequencing and CRISPR/Cas9 gene editing in butterflies. Nature Communications, 6, 8212.

Liu, X.Q., Zhou, H.Y., Zhao, J., Hua, H.X. & He, Y.P. (2016) Identification of the secreted watery saliva proteins of the rice brown planthopper, Nilaparvata lugens (Stål) by transcriptome and Shotgun LC–MS/MS approach. Journal of Insect Physiology, 89, 60–69.

Miles, P.W. (1999) Aphid saliva. Biological Reviews, 74(1), 41–85.

Moreno, A., Garzo, E., Fernandez‐Mata, G., Kassem, M., Aranda, M.A., & Fereres, A. (2011) Aphids secrete watery saliva into plant tissues from the onset of stylet penetration. Entomologia Experimentalis et Applicata, 139(2), 145–153.

Nicholson, S.J. & Puterka, G.J. (2014) Variation in the salivary proteomes of differentially virulent greenbug (Schizaphis graminum Rondani) biotypes. Journal of Proteomics, 105, 186–203.

Nicholson, S.J., Hartson, S.D. & Puterka, G.J. (2012) Proteomic analysis of secreted saliva from Russian Wheat Aphid (Diuraphis noxia Kurd.) biotypes that differ in virulence to wheat. Journal of Proteomics, 75(7), 2252–2268.

Rao, S.A., Carolan, J.C. & Wilkinson, T.L. (2013) Proteomic profiling of cereal aphid saliva reveals both ubiquitous and adaptive secreted proteins. PLoS One, 8(2), e57413.

Ray, S., Alves, P.C., Ahmad, I., Gaffoor, I., Acevedo, F.E., Peiffer, M., Jin, S., Han, Y., Shakeel, S., Felton, G.W. & Luthe, D.S. (2016) Turnabout is fair play: Herbivory-induced plant chitinases excreted in fall armyworm frass suppress herbivore defenses in maize. Plant Physiology, 171(1), 694–706.

Ribeiro, J.M.C. (1995) Insect saliva: function, biochemistry, and physiology. In: Regulatory mechanisms in insect feeding, Springer, Boston, MA, pp. 74–97.

Rioja, C., Zhurov, V., Bruinsma, K., Grbic, M. & Grbic, V. (2017) Plant-Herbivore Interactions: A Case of an Extreme Generalist, the Two-Spotted Spider Mite Tetranychus urticae. Molecular Plant-Microbe Interactions, 30(12), 935–945.

Rivera-Vega, L.J., Acevedo, F.E. & Felton, G.W. (2017) Genomics of Lepidoptera saliva reveals function in herbivory. Current Opinion in Insect Science, 19, 61–69.

Sharma, P.R. & Varma, A.J. (2014) Thermal stability of cellulose and their nanoparticles: effect of incremental increases in carboxyl and aldehyde groups. Carbohyd Polym, 114, 339–343.

Staudacher, H., Schimmel, B.C., Lamers, M.M., Wybouw, N., Groot, A.T. & Kant, M.R. (2017) Independent effects of a herbivore's bacterial symbionts on its performance and induced plant defences. International Journal of Molecular Sciences, 18(1), 182.

Tian, M., Win, J., Song, J., van der Hoorn, R., van der Knaap, E. & Kamoun, S. (2007) A Phytophthora infestans Cystatin-Like Protein Targets a Novel Tomato Papain-Like Apoplastic Protease. Plant Physiology, 143(1), 364–377.

Van Leeuwen, T., Tirry, L., Yamamoto, A., Nauen, R. & Dermauw, W. (2015) The economic importance of acaricides in the control of phytophagous mites and an update on recent acaricide mode of action research. Pesticide Biochemistry and Physiology, 121, 12–21.

Vandermoten, S., Harmel, N., Mazzucchelli, G., De Pauw, E., Haubruge, E. & Francis, F. (2014) Comparative analyses of salivary proteins from three aphid species. Insect Molecular Biology, 23(1), 67–77.

Wang, W., Wen, Y., Berkey, R. & Xiao, S. (2009) Specific targeting of the Arabidopsis resistance protein RPW 8.2 to the interfacial membrane encasing the fungal haustorium renders broad-spectrum resistance to powdery mildew. Plant Cell, 21(9), 2898–2913.

Wiśniewski, J.R., Zougman, A., Nagaraj, N. & Mann, M. (2009) Universal sample preparation method for proteome analysis. Nature Methods, 6(5), 359.

Wu, S., Peiffer, M., Luthe, D.S. & Felton, G.W. (2012) ATP hydrolyzing salivary enzymes of caterpillars suppress plant defenses. PLoS One, 7(7), e41947.

Xia, Q.Y., Cheng, D.J., Duan, J., Wang, G.H., Cheng, T.C., Zha, X.F., Liu, C., Zhao, P., Dai, F.Y., Zhang, Z., He, N.J., Zhang, L. & Xiang, Z.H. (2007) Microarray-based gene expression profiles in multiple tissues of the domesticated silkworm, Bombyx mori. Genome Biology, 8(8), 162.

Zhang, Y.K., Yang, K., Zhu, Y.X. & Hong, X.Y. (2018) Symbiont-conferred reproduction and fitness benefits can favour their host occurrence. Ecology and Evolution, 8(3), 1626–1633.

Zhao, D.X., Zhang, X.F., Chen, D.S., Zhang, Y.K. & Hong, X.Y. (2013) Wolbachia-host interactions: host mating patterns affect Wolbachia density dynamics. PloS One, 8(6), e66373.

Zhu, Y.X., Song, Y.L., Zhang, Y.K., Hoffmann, A.A., Zhou, J.C., Sun, J.T. & Hong, X.Y. (2018) Incidence of facultative bacterial endosymbionts in spider mites associated with local environment and host plant. Applied and Environmental Microbiology, 84(6), e02546-17.


  • There are currently no refbacks.

An international journal of the Systematic and Applied Acarology Society

ISSN 1362-1971