Open Access Open Access  Restricted Access Subscription Access


DOI: http://dx.doi.org/10.11158/saa.23.6.3

Comparative analyses of salivary proteins from the facultative symbiont-infected and uninfected Tetranychus truncatus

Yu-Xi Zhu, Yue-Ling Song, Hai-Jian Huang, Dian-Shu Zhao, Xue Xia, Kun Yang, Yi-Jia Lu, Xiao-Yue Hong

Abstract


Salivary proteins of herbivorous insects play a central role in plant-insect interactions. Spider mite Tetranychus truncatus is a polyphagous agricultural pest harboring various bacterial symbionts. However, whether endosymbionts infection in spider mite alters the host saliva protein remains largely unknown. Here, by using shotgun LC-MS/MS analysis, we identified and characterized the components of saliva in Wolbachia-Spiroplasma infected and uninfected T. truncatus. In total, 177 putative salivary proteins were identified. The function of many proteins remains unknown, while in numerous cases belong to catalytic activity and binding proteins. The saliva enzymes included oxidoreductase, hydratase, isomerase, transferase, protease, esterase, ribonuclease, kinase, lyase and phosphorylase. Other proteins, such as ATP-binding, actin, heat shock proteins and vitellogenin were also detected in the T. truncatus saliva. In addition, we found some of the saliva proteins are mite strain-specific salivary proteins—14 proteins were only found in Wolbachia-Spiroplasma infected spider mite, and 6 proteins were only found in Wolbachia-Spiroplasma uninfected spider mite. Overall, this is the first research to identify and characterize the proteins in saliva of facultative symbionts-infected and uninfected spider mites, T. truncatus. Our novel findings revealed that the presence of bacterial symbionts affected the saliva components of spider mites, opening the path for future studies.


Keywords


Tetranychidae, salivary proteins, Shotgun LC-MS/MS, plant-herbivore interaction

References


Acevedo, F.E., Peiffer, M., Tan, C.W., Stanley, B.A., Stanley, A., Wang, J., Jones, A.G., Hoover, K., Rosa, C., Luthe, D. & Felton, G.W. (2017) Fall armyworm-associated gut bacteria modulate plant defense responses. Molecular Plant-Microbe Interactions, 30(2), 127–137.

https://doi.org/10.1094/MPMI-11-16-0240-R

Bensoussan, N., Santamaria, M.E., Zhurov, V., Diaz, I., Grbic, M. & Grbic, V. (2016) Plant-herbivore interaction: dissection of the cellular pattern of Tetranychus urticae feeding on the host plant. Frontiers in Plant Science, 7(7), 1–13.

https://doi.org/10.3389/fpls.2016.01105

Carolan, J.C., Caragea, D., Reardon, K.T., Mutti, N.S., Dittmer, N., Pappan, K., Cui, F., Castaneto, M., Poulain, J., Dossat, C., Tagu, D., Reese, J.C., Reeck, G.R., Wilkinson, T.L. & Edwards, O.R. (2011) Predicted effector molecules in the salivary secretome of the pea aphid (Acyrthosiphon pisum): a dual transcriptomic/proteomic approach. Journal of Proteome Research, 10(4), 1505–1518.

https://doi.org/10.1021/pr100881q

Chaudhary, R., Atamian, H.S., Shen, Z., Briggs, S.P. & Kaloshian, I. (2015) Potato aphid salivary proteome: enhanced salivation using resorcinol and identification of aphid phosphoproteins. Journal of Proteome Research, 14(4), 1762–1778.

https://doi.org/10.1021/pr501128k

Chung, S.H., Rosa, C., Scully, E.D., Peiffer, M., Tooker, J.F., Hoover, K., Luthe, D.S. & Felton, G.W. (2013) Herbivore exploits orally secreted bacteria to suppress plant defenses. Proceedings of the National Academy of Sciences of the United States of America, 110(39), 15728–15733.

https://doi.org/10.1073/pnas.1308867110

Cooper, W.R., Dillwith, J.W. & Puterka, G.J. (2011) Comparisons of salivary proteins from five aphid (Hemiptera: Aphididae) species. Environmental Entomology, 40(1), 151–156.

https://doi.org/10.1603/EN10153

Cox, J. & Mann, M. (2008) MaxQuant enables high peptide identification rates, individualized ppb-range mass accuracies and proteome-wide protein quantification. Nature Biotechnology, 26(12), 1367.

https://doi.org/10.1038/nbt.1511

Cristofoletti, P.T., Mendonça de Sousa, F.A., Rahbe, Y. & Terra, W.R. (2006) Characterization of a membrane-bound aminopeptidase purified from Acyrthosiphon pisum midgut cells. FEBS Journal, 273(24), 5574–5588.

https://doi.org/10.1111/j.1742-4658.2006.05547.x

Day, B., Henty, J.L., Porter, K.J. & Staiger, C.J. (2011) The pathogen-actin connection: a platform for defense signaling in plants. Annual Review of Phytopathology, 49(1), 483–506.

https://doi.org/10.1146/annurev-phyto-072910-095426

de la Paz Celorio-Mancera, M., Ytterberg, A.J., Rutishauser, D., Janz, N. & Zubarev, R.A. (2015) Effect of host plant and immune challenge on the levels of chemosensory and odorant-binding proteins in caterpillar salivary glands. Insect Biochemistry and Molecular Biology, 61, 34–45.

https://doi.org/10.1016/j.ibmb.2015.04.006

De Vos, M. & Jander, G. (2009) Myzus persicae (green peach aphid) salivary components induce defence responses in Arabidopsis thaliana. Plant Cell and Environment, 32(11), 1548–1560.

https://doi.org/10.1111/j.1365-3040.2009.02019.x

Elzinga, D.A. & Jander, G. (2013) The role of protein effectors in plant–aphid interactions. Current Opinion in Plant Biology, 16(4), 451–456.

https://doi.org/10.1016/j.pbi.2013.06.018

Grbić, M., Van Leeuwen, T., Clark, R.M., Rombauts, S., Rouzé, P., Grbić, V., Osborne, E.J., Dermauw, W., Ngoc, P.C.T., Ortego, F., Hernández-Crespo, P., Diaz, I., Martinez, M., Navajas, M., Sucena, É., Magalhães, S., Nagy, L., Pace, R.M., Djuranović, S., Smagghe, G., Iga, M., Christiaens, O., Veenstra, J.A., Ewer, J., Villalobos, R.M., Hutter, J.L., Hudson, S.D., Velez, M., Yi, S.V., Zeng, J., Pires-Da Silva, A., Roch, F., Cazaux, M., Navarro, M., Zhurov, V., Acevedo, G., Bjelica, A., Fawcett, J.A., Bonnet, E., Martens, C., Baele, G., Wissler, L., Sanchez-Rodriguez, A., Tirry, L., Blais, C., Demeestere, K., Henz, S.R., Gregory, T.R., Mathieu, J., Verdon, L., Farinelli, L., Schmutz, J., Lindquist, E., Feyereisen, R. & Van De Peer, Y. (2011) The genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature, 479(7374), 487–492.

https://doi.org/10.1038/nature10640

Haegeman, A., Mantelin, S., Jones, J.T. & Gheysen, G. (2012) Functional roles of effectors of plant-parasitic nematodes. Gene, 492(1), 19–31.

https://doi.org/10.1016/j.gene.2011.10.040

Hardham, A.R., Takemoto, D. & White, R.G. (2008) Rapid and dynamic subcellular reorganization following mechanical stimulation of Arabidopsis epidermal cells mimics responses to fungal and oomycete attack. BMC Plant Biology, 8(1), 63.

https://doi.org/10.1186/1471-2229-8-63

Harmel, N., Létocart, E., Cherqui, A., Giordanengo, P., Mazzucchelli, G., Guillonneau, F., De Pauw, E., Haubruge, E. & Francis, F. (2008) Identification of aphid salivary proteins: a proteomic investigation of Myzus persicae. Insect Molecular Biology, 17(2), 165–174.

https://doi.org/10.1111/j.1365-2583.2008.00790.x

Hattori, M., Komatsu, S., Noda, H., Matsumoto, Y. (2015) Proteome analysis of watery saliva secreted by green rice leafhopper, Nephotettix cincticeps. PLoS One, 10(4), e0123671.

https://doi.org/10.1371/journal.pone.0123671

Huang, H.J., Liu, C.W., Huang, X.H., Zhou, X., Zhuo, J.C., Zhang, C.X. & Bao, Y.Y. (2016) Screening and functional analyses of Nilaparvata lugens salivary proteome. Journal of Proteome Research, 15(6), 1883–1896.

https://doi.org/10.1021/acs.jproteome.6b00086

Jonckheere, W., Dermauw, W., Zhurov, V., Wybouw, N., Van den Bulcke, J., Villarroel, C.A., Greenhalgh, R., Grbić, M., Schuurink, R.C., Tirry, L., Baggerman, G., Clark, R.M., Kant, M.R., Vanholme, B., Menschaert, G. & Van Leeuwen, T. (2016) The salivary protein repertoire of the polyphagous spider mite Tetranychus urticae: a quest for effectors. Molecular and Cellular Proteomics, 15(12), 3594–3613.

https://doi.org/10.1074/mcp.M116.058081

Koenig, C., Bretschneider, A., Heckel, D.G., Grosse-Wilde, E., Hansson, B.S. & Vogel, H. (2015) The plastic response of Manduca sexta to host and non-host plants. Insect Biochemistry and Molecular Biology, 63, 72–85.

https://doi.org/10.1016/j.ibmb.2015.06.001

Konishi, H., Noda, H., Tamura, Y. & Hattori, M. (2009) Proteomic analysis of the salivary glands of the rice brown planthopper, Nilaparvata lugens (Stål) (Homoptera: Delphacidae). Applied Entomology and Zoology, 44(4), 525–534.

https://doi.org/10.1303/aez.2009.525

Li, X.Y., Fan, D.D., Zhang, W., Liu, G.C., Zhang, L., Zhao, L., Fang, X.D., Chen, L., Dong, Y., Chen, Y., Ding, Y., Zhao, R.P., Feng, M.J., Zhu, Y.B., Feng, Y., Jiang, X.T., Zhu, D.Y., Xiang, H., Feng, X.K., Li, S.C., Wang, J., Zhang, G.J., Kronforst, M.R. & Wang, W. (2015) Outbred genome sequencing and CRISPR/Cas9 gene editing in butterflies. Nature Communications, 6, 8212.

https://doi.org/10.1038/ncomms9212

Liu, X.Q., Zhou, H.Y., Zhao, J., Hua, H.X. & He, Y.P. (2016) Identification of the secreted watery saliva proteins of the rice brown planthopper, Nilaparvata lugens (Stål) by transcriptome and Shotgun LC–MS/MS approach. Journal of Insect Physiology, 89, 60–69.

https://doi.org/10.1016/j.jinsphys.2016.04.002

Miles, P.W. (1999) Aphid saliva. Biological Reviews, 74(1), 41–85.

https://doi.org/10.1017/S0006323198005271

Moreno, A., Garzo, E., Fernandez‐Mata, G., Kassem, M., Aranda, M.A., & Fereres, A. (2011) Aphids secrete watery saliva into plant tissues from the onset of stylet penetration. Entomologia Experimentalis et Applicata, 139(2), 145–153.

https://doi.org/10.1111/j.1570-7458.2011.01117.x

Nicholson, S.J. & Puterka, G.J. (2014) Variation in the salivary proteomes of differentially virulent greenbug (Schizaphis graminum Rondani) biotypes. Journal of Proteomics, 105, 186–203.

https://doi.org/10.1016/j.jprot.2013.12.005

Nicholson, S.J., Hartson, S.D. & Puterka, G.J. (2012) Proteomic analysis of secreted saliva from Russian Wheat Aphid (Diuraphis noxia Kurd.) biotypes that differ in virulence to wheat. Journal of Proteomics, 75(7), 2252–2268.

https://doi.org/10.1016/j.jprot.2012.01.031

Rao, S.A., Carolan, J.C. & Wilkinson, T.L. (2013) Proteomic profiling of cereal aphid saliva reveals both ubiquitous and adaptive secreted proteins. PLoS One, 8(2), e57413.

https://doi.org/10.1371/journal.pone.0057413

Ray, S., Alves, P.C., Ahmad, I., Gaffoor, I., Acevedo, F.E., Peiffer, M., Jin, S., Han, Y., Shakeel, S., Felton, G.W. & Luthe, D.S. (2016) Turnabout is fair play: Herbivory-induced plant chitinases excreted in fall armyworm frass suppress herbivore defenses in maize. Plant Physiology, 171(1), 694–706.

https://doi.org/10.1104/pp.15.01854

Ribeiro, J.M.C. (1995) Insect saliva: function, biochemistry, and physiology. In: Regulatory mechanisms in insect feeding, Springer, Boston, MA, pp. 74–97.

Rioja, C., Zhurov, V., Bruinsma, K., Grbic, M. & Grbic, V. (2017) Plant-Herbivore Interactions: A Case of an Extreme Generalist, the Two-Spotted Spider Mite Tetranychus urticae. Molecular Plant-Microbe Interactions, 30(12), 935–945.

https://doi.org/10.1094/MPMI-07-17-0168-CR

Rivera-Vega, L.J., Acevedo, F.E. & Felton, G.W. (2017) Genomics of Lepidoptera saliva reveals function in herbivory. Current Opinion in Insect Science, 19, 61–69.

https://doi.org/10.1016/j.cois.2017.01.002

Sharma, P.R. & Varma, A.J. (2014) Thermal stability of cellulose and their nanoparticles: effect of incremental increases in carboxyl and aldehyde groups. Carbohyd Polym, 114, 339–343.

https://doi.org/10.1016/j.carbpol.2014.08.032

Staudacher, H., Schimmel, B.C., Lamers, M.M., Wybouw, N., Groot, A.T. & Kant, M.R. (2017) Independent effects of a herbivore's bacterial symbionts on its performance and induced plant defences. International Journal of Molecular Sciences, 18(1), 182.

https://doi.org/10.3390/ijms18010182

Tian, M., Win, J., Song, J., van der Hoorn, R., van der Knaap, E. & Kamoun, S. (2007) A Phytophthora infestans Cystatin-Like Protein Targets a Novel Tomato Papain-Like Apoplastic Protease. Plant Physiology, 143(1), 364–377.

https://doi.org/10.1104/pp.106.090050

Van Leeuwen, T., Tirry, L., Yamamoto, A., Nauen, R. & Dermauw, W. (2015) The economic importance of acaricides in the control of phytophagous mites and an update on recent acaricide mode of action research. Pesticide Biochemistry and Physiology, 121, 12–21.

https://doi.org/10.1016/j.pestbp.2014.12.009

Vandermoten, S., Harmel, N., Mazzucchelli, G., De Pauw, E., Haubruge, E. & Francis, F. (2014) Comparative analyses of salivary proteins from three aphid species. Insect Molecular Biology, 23(1), 67–77.

https://doi.org/10.1111/imb.12061

Wang, W., Wen, Y., Berkey, R. & Xiao, S. (2009) Specific targeting of the Arabidopsis resistance protein RPW 8.2 to the interfacial membrane encasing the fungal haustorium renders broad-spectrum resistance to powdery mildew. Plant Cell, 21(9), 2898–2913.

https://doi.org/10.1105/tpc.109.067587

Wiśniewski, J.R., Zougman, A., Nagaraj, N. & Mann, M. (2009) Universal sample preparation method for proteome analysis. Nature Methods, 6(5), 359.

https://doi.org/10.1038/nmeth.1322

Wu, S., Peiffer, M., Luthe, D.S. & Felton, G.W. (2012) ATP hydrolyzing salivary enzymes of caterpillars suppress plant defenses. PLoS One, 7(7), e41947.

https://doi.org/10.1371/journal.pone.0041947

Xia, Q.Y., Cheng, D.J., Duan, J., Wang, G.H., Cheng, T.C., Zha, X.F., Liu, C., Zhao, P., Dai, F.Y., Zhang, Z., He, N.J., Zhang, L. & Xiang, Z.H. (2007) Microarray-based gene expression profiles in multiple tissues of the domesticated silkworm, Bombyx mori. Genome Biology, 8(8), 162.

https://doi.org/10.1186/gb-2007-8-8-r162

Zhang, Y.K., Yang, K., Zhu, Y.X. & Hong, X.Y. (2018) Symbiont-conferred reproduction and fitness benefits can favour their host occurrence. Ecology and Evolution, 8(3), 1626–1633.

https://doi.org/10.1002/ece3.3784

Zhao, D.X., Zhang, X.F., Chen, D.S., Zhang, Y.K. & Hong, X.Y. (2013) Wolbachia-host interactions: host mating patterns affect Wolbachia density dynamics. PloS One, 8(6), e66373.

https://doi.org/10.1371/journal.pone.0066373

Zhu, Y.X., Song, Y.L., Zhang, Y.K., Hoffmann, A.A., Zhou, J.C., Sun, J.T. & Hong, X.Y. (2018) Incidence of facultative bacterial endosymbionts in spider mites associated with local environment and host plant. Applied and Environmental Microbiology, 84(6), e02546-17.

https://doi.org/10.1128/AEM.02546-17


Refbacks

  • There are currently no refbacks.


An international journal of the Systematic and Applied Acarology Society

ISSN 1362-1971