Open Access Open Access  Restricted Access Subscription Access


The Genome Size of Some Species of Hyalomma Ticks from Turkish Thrace 

Nadim Yılmazer


Hyalomma scupense, H. excavatum and H. marginatum are globally important tick species, as well as in Turkey, both in terms of human and animal health. The genome sizes of these tick species were determined in this study for the first time. From flow cytometric measurements, diploid genome sizes of female and male H. scupense were found to be 2.13 pg and 1.75 pg, respectively, while H. excavatum were 2.21 pg and 1.94 pg, and H. marginatum were 2.48 pg and 1.98 pg, respectively. Differences in diploid genome size indicate X chromosome size of females and males in these ticks because they have an XX:XO sex determination system. Thus, it was estimated that the X chromosome of H. scupense, H. excavatum, and H. marginatum may be composed of as much as 0.38 pg, 0.27 pg, and 0.50 pg of DNA, respectively. These findings indicate suitability of these three species for genome sequencing due to the relatively small size of their genomes compared with other tick species.


Tick, Genome size, Flow cytometry, Hyalomma, Turkish Thrace


Aktas, M., Vatansever, Z. & Ozubek, S. (2014) Molecular evidence for trans-stadial and transovarial transmission of Babesia occultans in Hyalomma marginatum and Rhipicephalus turanicus in Turkey. Veterinary Parasitology, 204(3-4), 369–371.

Bakırcı, S., Bilgiç, H.B., Hacılarlıoğlu, S., Ünlü, A.H., Köse, O., Aksulu, A., Eren, H. & Karagenç, T. (2015) Laboratuvar şartlarında Hyalomma excavatum’un üretilmesi ve kolonizasyonu. Ankara Üniversitesi Veteriner Fakültesi Dergisi, 62, 99–104.

Bennett, M.D., Leitch, I.J., Price, H.J. & Johnston, J.S. (2003) Comparisons with Caenorhabditis (~100 Mb) and Drosophila (~175 Mb) using flow cytometry show genome size in Arabidopsis to be ~157Mb and thus ~25% larger than the Arabidopsis genome initiative estimate of ~125 Mb. Annals of Botany, 91, 547–557.

Chen, C., Munderloh, U.G. & Kurtti, T.J. (1994) Cytogenetic characteristics of cell lines from Ixodes scapularis (Acari: Ixodidae). Journal of Medical Entomology, 31(3), 425–434.

Cramaro, W.J., Hunewald, O.E., Bell-Sakyi, L. & Muller, C.P. (2017) Genome scaffolding and annotation for the pathogen vector Ixodes ricinus by ultra-long single molecule sequencing. Parasites & Vectors, 10:71.

de la Fuente, J., Estrada-Peña, A., Venzal, J.M., Kocan, K.M. & Sonenshine, D.E. (2008) Overview: ticks as vectors of pathogens that cause disease in humans and animals. Frontiers in Bioscience, 13, 6938–6946.

de la Fuente, J., Waterhouse, R.M., Sonenshine, D.E., Roe, R.M., Ribeiro, J.M., Sattelle, D.B. & Hill, C. A. (2016) Tick Genome Assembled: New Opportunities for Research on Tick-Host-Pathogen Interactions. Frontiers in Cellular and Infection Microbiology, 6, 103.

Dolezel, J., Bartos, J., Voglmayr, H. & Greilhuber, J. (2003) Nuclear DNA content and genome size of trout and human. Cytometry A, 51, 127–128.

Dolezel, J. & Bartos, J. (2005) Plant DNA flow cytometry and estimation of nuclear genome size. Annals of Botany, 95, 99–110.

Estrada-Peña, A., Ostfeld, R.S., Peterson, A.T., Poulin, R. & de la Fuente, J. (2014) Effects of environmental change on zoonotic disease risk: an ecological primer. Trends in Parasitology, 30, 205–214.

Galbraith, D.W., Harkins, K.R., Maddox, J.M., Ayers, N.M., Sharma, D.P. & Firoozabady, E. (1983) Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science, 220, 1049–1051.

Geraci, N.S., Johnston, J.S., Robinson, J.P., Wikel, S.K. & Hill, C.A. (2007) Variation in genome size of argasid and ixodid ticks. Insect Biochemistry and Molecular Biology, 37(5), 399–408.

Gregory, T.R. (2005) Synergy between sequence and size in large-scale genomics. Nature Reviews Genetics, 6, 699–708.

Gulia-Nuss, M., Nuss, A. B., Meyer, J.M., Sonenshine, D.E., Michael Roe, R., Waterhouse, R.M., Sattelle, D.B., Fuente, J.D.L., Ribeiro, J.M., Megy, K., Thimmapuram, J., Miller, J.R., Walenz, B.P., Koren, S., Hostetler, J.B.,Thiagarajan, M., Joardar, V.S., Hannick, L.I., Bidwell, S., Hammond, M.P., Young, S., Zeng, Q.D., Abrudan, J.L., Almeida, F.C., Ayllón, N., Bhide, K., Bissinger, B.W., Bonzon-Kulichenko, E. Buckingham, S.D., Caffrey, D.R., Caimano, M.J., Croset, V., Driscoll, T., Gilbert, D., Gillespie, J.J., Giraldo-Calderón, G.I.,Grabowski, J.M., Jiang, D., Khalil, S.M.S., Kim, D., Kocan, K.M., Koči, J., Kuhn, R.J., Kurtti, T.J., Lees, K., Lang, E.G., Kennedy, R.C., Kwon, H., Perera, R., Qi, Y., Radolf, J.D., Sakamoto, J.M., Sánchez-Gracia, A. Severo, M.S., Silverman, N., Šimo, L., Tojo, M., Tornador, C., Van Zee, J.P., Vázquez, J., Vieira, F.G., Villar, M., Wespiser, A.R., Yang, Y., Zhu, J., Arensburger, P., Pietrantonio, P.V., Barker, S.C., Shao, R., Zdobnov, E.M., Hauser, F., Grimmelikhuijzen, C.J.P., Park, Y., Rozas, J., Benton, R. Pedra, J.H.F., Nelson, D.R., Unger, M.F.,Tubio, J.M.C., Tu, Z., Robertson, H.M., Shumway, M., Sutton, G., Wortman, J.R., Lawson, D., Wikel, S.K., Nene,V.M., Fraser,C.M., Collins, F.H., Bruce, B., Nelson, K.E., Caler, E. & Hill, C.A. (2016) Genomic insights into the Ixodes scapularis tick vector of Lyme disease. Nature Communications, 7, 10507.

Gunn, S.J. & Hilburn, L.R. (1990) Cytosystematics of five North American Dermacentor (Acari: Ixodidae) species. Journal of Medical Entomology, 27(4), 620–627.

Güler, S., Özer, E., Erdoğmuş, S.Z., Köroğlu, E. & Bektaş, İ. (1993) Malatya ve bazı Güneydoğu Anadolu illerinde sığır, koyun ve keçilerde bulunan kene (Ixodidea) türleri. Turkish Journal of Veterinary and Animal Sciences, 17, 229–231.

Hill, C.A. & Wikel, S.K. (2005) The Ixodes scapularis Genome Project: an opportunity for advancing tick research. Trends in Parasitology, 21(4), 151–153.

Jongejan, F. & Uilenberg, G. (2004) The global importance of ticks. Parasitology, 129, S3–14.

Kahn, J. (1964) Cytotaxonomy of ticks. The Quarterly Journal of Microscopical Science, 105(1), 123–137.

Kar, S., Yılmazer, N., Akyıldız, G. & Gargılı, A. (2017) The human infesting ticks in the city of Istanbul and its vicinity with reference to a new species for Turkey. Systematic & Applied Acarology, 22(12), 2245–2255.

Keskin, A. & Bursali, A. (2016) Detection of Rickettsia aeschlimannii and Rickettsia sibirica mongolitimonae in Hyalomma marginatum (Acari: Ixodidae) ticks from Turkey. Acarologia, 56(4), 533–536.

Klompen, J.S.H., Black, W.C., Keirans, J.E. & Norris, D.E. (2000) Systematics and biogeography of hard ticks, a total evidence approach. Cladistics, 16, 70–102.

Klous, G., Huss, A.,Heederik, D.J.J. - !& Coutinho, R.A. (2016) Human-livestock contacts and their relationship to transmission of zoonotic pathogens, a systematic review of literature. One Health, 2, 65–76.

Mansfield, K.L., Cook, C., Ellis, R., Bell-Sakyi, L., Johnson, N., Alberdi, P., de la Fuente, J. & Fooks, A.R. (2017) Tick-borne pathogens induce differential expression of genes promoting cell survival and host resistence in Ixodes ricinus cells. Parasites & Vectors, 10, 81.

Meyer, J.M., Kurtti, T.J., Van Zee, J.P. & Hill, C.A. (2010) Genome organization of major tandem repeats in the hard tick, Ixodes scapularis. Chromosome Research, 18(3), 357–370.

Nene, V., (2009) Tick genomics – coming of age. Frontiers in Bioscience, 14, 2666–2673.

Oliver, J.H.Jr. (1977) Cytogenetics of Mites and Ticks. Annual Review of Entomology, 22, 407–429.

Orkun, Ö. & Karaer, Z. (2018) First record of the tick Ixodes (Pholeoixodes) kaiseri in Turkey. Experimental and Applied Acarology, 74(2), 201–205.

Pagel Van Zee, J., Geraci, N.S., Guerrero, F.D., Wikel, S.K., Stuart, J.J., Nene, V.M. & Hill, C.A. (2007) Tick genomics: the Ixodes genome project and beyond. International Journal for Parasitology, 37(12), 1297–1305.

Palmer, M.J., Bantle, J.A., Guo, X. & Fargo, W.S. (1994) Genome size and organization in the ixodid tick Amblyomma americanum. Insect Molecular Biology, 3, 57–62.

Ribeiro, J., Alarcon-Chaidez, F., Francischetti, I.M.B., Mans, B., Mather, T.N., Valenzuela, J.G. & Wikel, S.K. (2006) An annotated catalog of salivary gland transcripts from Ixodes scapularis ticks. Insect Biochemistry and Molecular Biology, 36, 111–129.

Ribeiro, J.M., Slovák, M. & Francischetti, I.M. (2017) An insight into the sialome of Hyalomma excavatum. Ticks and Tick-borne Diseases, 8(2), 201–207.

Ullmann, A.J., Lima, C.M., Guerrero, F.D., Piesman, J. & Black IV, W.C. (2005) Genome size and organization in the blacklegged tick, Ixodes scapularis and the Southern cattle tick, Boophilus microplus. Insect Molecular Biology, 14, 217–222.

Valenzuela, J.G., Francischetti, I.M.B., Pham, V.M., Garfield, M.K., Mather, T.N. & Ribeiro, J.M.C. (2002) Exploring the sialome of the tick Ixodes scapularis. Journal of Experimental Biology, 205, 2843–2864.

Vatansever, Z., Uzun, R., Estrada-Peña, A. & Ergonul, O. (2007) Crimean-Congo haemorrhagic fever in Turkey. In: Ergonul, O., Whitehouse, C.A. (Eds.). Crimean-Congo hemorrhagic fever: A global perspective. Springer, Dordrecht, pp. 59–74.


  • There are currently no refbacks.

An international journal of the Systematic and Applied Acarology Society

ISSN 1362-1971