DOI: http://dx.doi.org/10.22073/pja.v7i3.36682

Comparison of susceptibility of two Iranian populations of Tetranychus urticae Koch (Acari: Tetranychidae) to spirodiclofen

Saeed Farahani, Alireza Bandani, Soheil Eslami

Abstract


Two-spotted spider mite, Teranychus urticae (Acari: Tetranychide), is one of the most important agricultural pests throughout the world. The high reproductive potential, short life cycle, combined with frequent acaricide applications has resulted in resistance development to a wide range of acaricides. Resistance to acaricides has an important role in inefficiency of chemical control of this pest. In the present study, the susceptibility of two populations of two-spotted spider mite collected from Karaj (KrS) and Mahallat (MhR) to spirodiclofen was investigated. The bioassay was conducted using a leaf-dip method on same-age protonymphs. Bioassay results showed that there was a significant difference between LC50 values of KrS and MhR populations. The resistance ratio was obtained as 22.19. The synergistic effects of triphenyl phosphate (TPP), piperonyl butoxide (PBO) and diethyl maleate (DEM) were assessed using residual contact vial (RCV) bioassay method. Results of the synergistic studies showed significant differences between LC50 values of spirodiclofen with spirodiclofen + PBO and spirodiclofen + TPP in MhR population. The most synergistic effect in MhR population was related to PBO. The results of enzyme assays revealed that the most ratio activity in MhR population to KrS population was related to cytochrome P450 monoxygenase (3.02) and the lowest ratio activity was related to glutathione S-transferase (GST) (1.40). These results confirmed that esterase and cytochrome P450 monoxygenase are probably involved in resistance of T. urticae to spirodiclofen.


Keywords


Detoxification enzymes; resistance mechanisms; spirodiclofen; synergists; two-spotted spider mite

Full Text:

PDF

References


Alizadeh, A., Talebi, K., Hosseininaveh, V. & Ghadamyari, M. (2011) Metabolic resistance mechanisms to phosalone in the common pistachio psyllid, Agonoscena pistaciae (Hem.: Psyllidae). Pesticide Biochemistry and Physiology, 101(2): 59–64.

Brogdon, W. G., McAllister, J. C., & Vulule, J. (1997) Heme peroxidase activity measured in single mosquitoes identifies individuals expressing an elevated oxidase for insecticide resistance. Journal of the American Mosquito Control Association, 13(3): 233–237.

Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2): 248–254.

Bretschneider, T., Fischer, R. & Nauen, R. (2007) Inhibitors of lipid synthesis (acetyl-CoA-carboxylase inhibitors). Modern Crop Protection Compounds, 3: 909–926.

Demaeght, P., Dermauw, W., Tsakireli, D., Khajehali, J., Nauen, R., Tirry, L. & Van Leeuwen, T. (2013) Molecular analysis of resistance to acaricidal spirocyclic tetronic acids in Tetranychus urticae: CYP392E10 metabolizes spirodiclofen, but not its corresponding enol. Insect Biochemistry and Molecular Biology, 43(6): 544–554.

Edwards, C.A. (1975) Factors that affect the persistence of pesticides in plants and soils. In: Varo, P. (Ed.), Pesticide Chemistry–3, Third International Congress of Pesticide Chemistry Including the Symposium on Dispersion Dynamics of Pollutants in the Environment, Elsevier, pp. 39–56.

Farahani, S., Bandani, A., Bigham, Z. & Khalili Moghadam, A. (2016) Study of susceptibility of two populations of the two-spotted spider mite, Teranychus urticae Koch (Acari: Tetranychidae) to Chlorpyrifos and Propargite. In: Talaei-Hassanloui, R. (Ed.) Proceedings of the 22nd Iranian Plant Protection Congress, 27-30 August 2016, Karaj, Iran, p. 829.

Ferreira, C.B., Andrade, F.H., Rodrigues, A.R., Siqueira, H.A. & Gondim Jr, M.G. (2015) Resistance in field populations of Tetranychus urticae to acaricides and characterization of the inheritance of abamectin resistance. Crop Protection, 67: 77–83.

Habig, W.H., Pabst, M.J. & Jakoby, W.B. (1974) Glutathione S-transferases the first enzymatic step in mercapturic acid formation. Journal of biological Chemistry, 249(22): 7130–7139.

Jeppson, L., Keifer, H. & Baker, E. (1975) Mites injurious to economic plants. University of Carolina Press, Berkeley, CA, 614 pp.

Kalyanasundaram, M. & Das, P.K. (1985) Larvicidal and synergistic activity of plant extracts for mosquito control. Indian Journal of Medical Research, 82(1): 19–23.

Kim, Y.J., Lee, S.H., Lee, S.W., & Ahn, Y.J. (2004) Fenpyroximate resistance in Tetranychus urticae (Acari: Tetranychidae): cross‐resistance and biochemical resistance mechanisms. Pest Management Science, 60(10): 1001–1006.

Kwon, D.H., Seong, G.M., Kang, T.J., & Lee, S.H. (2010) Multiple resistance mechanisms to abamectin in the two-spotted spider mite. Journal of Asia-Pacific Entomology, 13(3): 229–232.

Konanz, S. & Nauen, R. (2004) Purification and partial characterization of a GST from the two-spotted spider mite, Tetranychus urticae. Pesticide Biochemistry and Physiology, 79(2): 49–57.

Memarizadeh N., Ghadamyari M., Sajedi R.H. & Jalali-Sendi, J. (2010) Cross resistance of Tetranychus urticae Koch (Acari: Tetranychidae) to abamectin and rosemary essential oil. Iranian Journal of Plant Protection Science, 41(1): 125–134 (In Persian).

Memarizadeh, N., Ghadamyari, M., Sajedi, R.H. & Jalali Sendi, J. (2011) Characterization of esterases from abamectin-resistant and susceptible strains of Tetranychus urticae Koch (Acari: Tetranychidae). International Journal of Acarology, 37(4): 271–281.

Migeon, A. & Dorkeld, F. (2010) Spider Mites Web: a comprehensive database for the Tetranychidae. Available from: http://www.montpellier.inra.fr/CBGP/spmweb (accessed on 16 October 2017)

Mohammadzadeh, M., Bandani, A.R. & Sabahi, Q. (2014) Comparison of susceptibility of two populations of Tetranychus urticae Koch to two acaricides, abamectin and propargite. Archives of Phytopathology and Plant Protection, 47(17): 2112–2123.

Nauen, R., Bretschneider, T., Elbert, A., Fischer, R. & Tieman, R. (2003) Spirodiclofen and spiromesifen. Pesticide Outlook, 14(6): 243–246.

Opit, G.P., Jonas, V.M., Williams, K.A., Margolies, D.C. & Nechols, J.R. (2001) Effects of cultivar and irrigation management on population growth of the twospotted spider mite Tetranychus urticae on greenhouse ivy geranium. Experimental & Applied Acarology, 25(10–11): 849–857.

Pree, D.J., Whitty, K.J. & Van Driel, L. (2005) Baseline susceptibility and cross resistances of some new acaricides in the European red mite, Panonychus ulmi. Experimental & Applied Acarology, 37(3–4): 165.

https://doi.org/10.1007/s10493-005-1423-3

Rauch, N. & Nauen, R. (2002) Spirodiclofen resistance risk assessment in Tetranychus urticae (Acari: Tetranychidae): a biochemical approach. Pesticide Biochemistry and Physiology, 74(2): 91–101.

Rola, A.C. & Pingali, P.L. (1993) Pesticides, rice productivity, and farmers' health: an economic assessment. IRRI CABI, 107 pp.

Sato, M.E., Veronez, B., Stocco, R.S., Queiroz, M.C.V. & Gallego, R. (2016) Spiromesifen resistance in Tetranychus urticae (Acari: Tetranychidae): Selection, stability, and monitoring. Crop Protection, 89: 278–283.

Seyed-Talebi, F., Kheradmand, K., Talaei-Hassanloui, R. & Talebi-Jahromi, K. (2014) Synergistic effect of Beauveria bassiana and spirodiclofen on the two-spotted spider mite (Tetranychus urticae). Phytoparasitica, 42: 405–412.

Stumpf, N. & Nauen, R. (2002) Biochemical markers linked to abamectin resistance in Tetranychus urticae (Acari: Tetranychidae). Pesticide Biochemistry and Physiology, 72(2): 111–121.

Tirello, P., Pozzebon, A., Cassanelli, S., Van Leeuwen, T. & Duso, C. (2012) Resistance to acaricides in Italian strains of Tetranychus urticae: toxicological and enzymatic assays. Experimental & Applied Acarology, 57(1): 53–64.

Van Asperen, K. (1962) A study of housefly esterases by means of a sensitive colorimetric method. Journal of Insect Physiology, 8(4): 401–416.

Van Leeuwen, T., Stillatus, V. & Tirry, L. (2004) Genetic analysis and cross-resistance spectrum of a laboratory-selected chlorfenapyr resistant strain of two-spotted spider mite (Acari: Tetranychidae). Experimental & Applied Acarology, 32(4): 249–255.

Van Leeuwen, T., Van Pottelberge, S. & Tirry, L. (2005) Comparative acaricide susceptibility and detoxifying enzyme activities in field‐collected resistant and susceptible strains of Tetranychus urticae. Pest Management Science, 61(5): 499–507.

Van Pottelberge, S., Van Leeuwen, T., Khajehali, J. & Tirry, L. (2009) Genetic and biochemical analysis of a laboratory‐selected spirodiclofen‐resistant strain of Tetranychus urticae Koch (Acari: Tetranychidae). Pest Management Science, 65(4): 358–366.

Wachendorff, U., Nauen, R., Schnorbach, H. J., Stumpf, N., & Elbert, A. (2002) The biological profile of spirodiclofen (Envidor®)-a new selective tetronic acid acaricide. Pflanzenschutz nachrichten-bayer-english edition, 55: 149–176.

Zamani, P., Sajedi, R., Ghadamyari, M. & Memarizadeh, N. (2014) Resistance mechanisms to chlorpyrifos in Iranian populations of the two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae). Journal of Agricultural Science and Technology, 16(2): 277–289.


Refbacks

  • There are currently no refbacks.




Copyright (c) 2018 Persian Journal of Acarology

License URL: http://creativecommons.org/licenses/by-nc-nd/2.0/fr/deed.en_GB