Inter- and intraspecific predation events are common among lizards, and they are referred to as saurophagy (e.g., Teixeira and Giovanelli, 1999; Kokubum and Lemos, 2004; Zanchi et al., 2012) and cannibalism (e.g., Kiefer et al., 2006; Albuquerque, 2010; Sales et al., 2011), respectively. These events are characterized by the death (e.g., Costa et al., 2010; Zanchi et al., 2012), or by the ingestion of non-vital parts (e.g., Kiefer et al., 2006; Pergentino et al., 2017), of the prey.

*Tropidurus torquatus* (Wied, 1820) is a common lizard in open vegetation from South America, occurring in areas with sandy soil such as restingas (e.g., Rocha et al., 2000; Siqueira et al., 2013) and other herbaceous and shrub native vegetation (e.g., Giaretta, 1996; Gandolfi and Rocha, 1998; Bérnils et al., 2015). The body size of the species averages 101.86 mm in snout-vent length (SVL) for males and 87.57 mm for females (Pinto et al., 2005). *Tropidurus torquatus* is an ambush forager (Bergallo and Rocha, 1994; Rocha et al., 2000), and its diet is composed mainly of insects, primarily Formicidae (Hymenoptera), with records of occasional consumption of plant material, such as fruits and flowers. Nevertheless, it might also include the consumption of other lizard species (e.g., Teixeira and Giovanelli, 1999; Carvalho et al., 2007; Siqueira et al., 2013). This lizard has diurnal activity between 06:00 h and 18:00 h (Hatano et al., 2001), although individuals can usually be found active at dusk. *Tropidurus torquatus* can be found in sympathy with some other lizard species in southeastern Brazil, such as *Ameivula nativo* (Rocha, Bergallo & Peccinini-Seale, 1997) (e.g., Bergallo and Rocha, 1994; Bérnils et al., 2015).

*Ameivula nativo* is a parthenogenetic endemic species inhabiting sandy substrate regions of the coastal portion of the Atlantic Forest, occurring from southern Bahia state southwards to the south of Espírito Santo state (Rocha et al., 1997; Rocha et al., 1999). *Ameivula nativo* is a relatively small-sized (mean SVL = 56.1 mm) active forager lizard (Rocha et al., 2004; Rocha et al., 2009) preying mainly on Isoptera and insect larvae (Menezes et al., 2008). This lizard is diurnal and active between 07:00 h and 14:00 h (Peloso et al., 2008). *Ameivula nativo* is currently categorized as Endangered in global (IUCN, 2018) and national (ICMBio, 2014) lists of threatened species and as Vulnerable in the state of Espírito Santo (Almeida et al., 2007).

Herein we report the presence of tail fragments of *A. nativo* in the stomach contents of *T. torquatus*. Our observation took place in the Reserva Natural Vale (RNV, Vale Natural Reserve; -19.0211ºS, -40.0717ºW and -19.2536ºS, -39.8686ºW; datum: WGS84), located in the municipality of Linhares, northern region of the state of Espírito Santo, southeastern Brazil (Fig. 1). The lizard was in an herbaceous-arbustive vegetation area over a sandy substrate locally known as Campo Nativo (Native Grassland), located at the end of the Bomba D’Água internal unpaved road (-19.1114ºS and -39.8847ºW; datum: WGS84).

The record was obtained in February 2017. We collected the stomach contents by stomach flushing of an adult male *T. torquatus* (SVL = 81.4 mm; weight = 16 g) captured in a pitfall trap. The stomach content was analysed in the laboratory, and the prey items recorded were an insect of the order Coleoptera and two tail fragments of *A. nativo* (Fig. 2A and 2B). The species...
identification of the tail consumed was performed based on the morphological pattern of the tail scales and the colour of the material (Fig. 2C and 2D). In the studied area, other species of the genus *Ameivula* do not occur.

*Ameivula nativo* occurs in sympatry with *T. torquatus* in different localities, and the interaction records involving these two species are restricted to Peloso and Pavan (2007). These authors documented the attempted predation of *A. nativo* by *T. torquatus* in a restinga from the municipality of Guarapari, state of Espírito Santo, but the death and ingestion of the specimen (or of prey parts) was not recorded (Peloso and Pavan, 2007). The high rate of movement of *A. nativo* due to its active foraging strategy is suggested by Siqueira and Rocha (2008) as a factor that could make this lizard potentially more difficult to be captured and preyed on by other lizards. However, our record indicates that this factor was not enough to prevent its attempted predation and tail ingestion (probably after autotomy) by *T. torquatus*, as recorded for other species of the same genus (see forward).

For *T. torquatus*, there have already been several documented events of saurophagy including species of different families. These include (1) the Gekkonidae, with one record described from the observation of *Hemidactylus mabouia* preyed on in a residential area in the municipality of Contagem, state of Minas Gerais (Galdino and Van Sluys, 2004), and another case in the stomach contents of an individual in a restinga in the municipality of São Mateus, state of Espírito Santo (Teixeira and Giovanelli, 1999); (2) the Scincidae, with a predation event on *Brasiliscincus agilis* based on records from the stomach contents of an individual *T. torquatus* from a restinga in São Mateus, Espírito Santo (Teixeira and Giovanelli, 1999), and three events of saurophagy on *Mabuya macrorhyncha*, with one of them corresponding to the ingestion of an entire individual and the other two being cases of the ingestion of tail fragments, all in the Jurubatiba restinga (municipality of Macaé), Rio de Janeiro state (Kiefer et al., 2006; Siqueira et al., 2013); (3) the Phyllodactylidae, with a record of *Gymnodactylus darwinii* in the stomach contents of an individual *T. torquatus* from Restinga in São Mateus, Espírito Santo (Teixeira and Giovanelli, 1999); and (4) the Teiidae, with records of predation and ingestion of tail fragments of species of the genus *Ameivula* (previously *Cnemidophorus*). The Teiidae represents the second family most frequently predated by tropidurid lizards, and the Tropiduridae family itself is the most frequently consumed (Pergentino...
et al., 2017). Records of predation of teiid lizards by *T. torquatus* include *Ameivula ocellifera* in a farm in Cumari municipality, Goiás state (Kokubum and Lemos, 2004), and *Ameivula littoralis* in the restinga of Barra de Maricá, Rio de Janeiro state (Kiefer et al., 2006; Siqueira et al., 2013). Therefore, *T. torquatus* can be considered a predator of small-sized lizards.

Events of predation of conspecifics are attributed to nutritional deficiency, conflict between territorial lizards or a high abundance of species (Polis, 1981). We suggested that the event of tail ingestion reported here occurred due to a predation attempt, and probably did not occur for reasons similar to those proposed for conspecifics cases by Polis (1981), highlighting the opportunistic feeding habit and the generalist diet of *T. torquatus*. Our record (and previous similar records) may have been favoured by the differences in body size among the two species, a condition that favours the occurrence of cannibalism (e.g., Rocha et al., 2000; Siqueira and Rocha, 2008) and saurophagy, since most of the species reported as prey of *T. torquatus* are of a smaller body size or are juvenile individuals (e.g., Galdino and Van Sluys, 2004; Kiefer et al., 2006). Although the ingestion of only tail fragments may have resulted from an agonistic interaction (Van Sluys et al., 2004), we assume that if the ingested tail is from a smaller-sized species, then the ingestion event is likely to be an example of attempted predation, which characterizes saurophagy (Pergentino et al., 2017). In this case, even though the ingestion of fragments of the tail may raise suspicion as to the death of the specimen, it is also not possible to state if it has not been killed and only partially ingested. There are two known cases of exceptions to the predation of smaller prey. One of them is the reported attempt of predation on a snake, *Phalotris matogrossensis*, by *T. torquatus*, which resulted in the death of the prey, but the snake was not ingested possibly due to its larger body size (Sena et al., 2017).
The other case was the attempted predation between two species of tropidurid lizards, *Tropidurus hispidus* and *Tropidurus jaguaribanus*, which caused the death of the second one (Passos et al., 2016). Despite this, the attempted ingestion was unsuccessful because the size of the prey (only 36.1 mm smaller) did not allow its ingestion by *Tropidurus hispidus* (Passos et al., 2016).

The record presented here represents the confirmation of saurophagy between *A. nativo* and *T. torquatus*, expanding these interaction records within the Tropiduridae and Teiidae families as well as among the lizard genera cited. It should be noted that of the two species of teiid lizards previously reported as prey of *T. torquatus*, one species is listed as Threatened in its Brazilian territory, *A. litorais*, and now so is *A. nativo* (ICMBio, 2014). Studies to determine the frequency with which saurophagy events occur in lizard communities are recommended to better assess the impact of these events on population structure and dynamics, especially for threatened species.

Acknowledgements. L.J. Guimarães thanks Coordenação de Aperfeicoamento de Pessoal de Nível Superior (CAPES) for the postgraduate scholarship. A.C. Srbek-Araujo thanks the Universidade Vila Velha and Fundação de Amparo à Pesquisa e Inovação do Espírito Santo (FAPES 0607/2015 and 0510/2016), which sponsored the research of the Laboratório de Ecologia e Conservação de Biodiversidade (LECBio). We thank the Instituto Chico Mendes de Conservação da Biodiversidade for the permission for research activities (SISBIO 56071-5) and Vale S.A./Instituto Ambiental Vale for permission to carry out our research in Reserva Natural Vale.

References


Accepted by Graham Walters