The Golden-bellied snakelet *Erythrolamprus epinephelus* (Cope, 1862) is a diurnal terrestrial colubrid that mainly feeds on anurans (Savage, 2002). The total maximum length of this species is 775 mm in females (incomplete tail; Dixon, 1983) and 805 mm in males (Ramírez-Jaramillo, 2015). This species inhabits swamps and riverbanks in open areas, grasslands, and humid forests (Savage, 2002). Apparently, it prefers high Andean forests and open areas (Acevedo et al., 2016), and it is present in Costa Rica, Panama, Colombia, Venezuela, Ecuador, and Peru at elevations from 0–3400 m (Dixon, 1983). Currently, the known geographic distribution of the species in Venezuela includes noticeable gaps, with records known for elevations between 170 m (Esqueda et al., 2007) and 2300 m (Natera et al., 2015).

Erythrolamprus epinephelus comprises nine subspecies (Uetz et al., 2017), of which three have been reported for Venezuela. *Erythrolamprus e. bimaculatus* (Cope, 1899) is only known from a single locality, 17 km N Guaraque [= road to Tovar, 17 km N Guaraque], according museum data (Table 1), in the Cordillera de Mérida (CM), Mérida State (Fig. 2A; Dixon, 1983). *Erythrolamprus e. kogiorum* (Bernal-Carlo, 1994) is known from two localities in the Sierra de Perijá, Zulia State (Fig. 2A, Table 1; Rojas-Runjaic et al., 2007). *Erythrolamprus e. opisthotaenius* (Boulenger, 1908) is known from the Tamá Massif and several localities in the CM (Fig. 2A, Table 1; Dixon, 1983).

Here I report new records of *E. e. bimaculatus* and *E. e. opisthotaenius* that extend the known distribution of both subspecies for Venezuela. These records were based on museums specimens housed at Colección de Vertebrados de la Universidad de Los Andes (CVULA), Mérida, Venezuela, and the Museo de Historia Natural La Salle (MHNLS), Caracas, Venezuela. The specimens were in a good condition and allowed reliable identification based on Dixon (1983) and Kornacker (1999). Measurements provided include snout–vent length (SVL) and tail length (TL), measured to the nearest mm using a measuring tape. The localities known for *E. epinephelus* in Venezuela, including these new records, are listed in Table 1. All localities were verified and georeferenced (when necessary) using Google Earth. Below I provide additional information for the new records.

Two specimens were identified as *E. e. bimaculatus*. The first, collected during the Proyecto Uribante Caparo on 4 November 1985, is an adult male specimen (CVULA IV-4321, SVL = 415 mm, TL = 131 mm; Fig. 1A,B) from Boca de Monte, Michelena Municipality, Táchira State (8.0505° N, 71.8506° W; WGS 84), elevation 2192 m (Locality 1 in Fig. 2A). An adult male road-killed specimen (CVULA IV-8526, SVL = 571 mm, TL = 182 mm) was collected by Jesús Molinari on 10 July 1999, at Páramo de San José, Campo Elías Municipality, Táchira State (8.3381° N, 71.3036° W; WGS 84), elevation 2192 m (Locality 1 in Fig. 2A). An adult male road-killed specimen (CVULA IV-8526, SVL = 571 mm, TL = 182 mm) was collected by Jesús Molinari on 10 July 1999, at Páramo de San José, Campo Elías Municipality, Táchira State (8.3381° N, 71.3036° W; WGS 84), elevation 2980 m (Locality 2 in Fig. 2A).

Three specimens could be identified as *E. e. opisthotaenius*. One adult specimen of unknown sex (CVULA IV-4273, SVL = 481 mm, TL = 145 mm; Fig. 1C,D) was collected on 26 June 1985 at 5 km S Barinitas, Bolivar Municipality, Barinas State (8.7064° N, 70.3905° W; WGS 84), elevation 353 m (Locality 3 in Fig. 2A). Another adult male specimen (MHNLS 22008, unknown measurements) was collected by Fernando Rojas-Runjaic and Michelle Castellanos...
on 8 July 2015 at a locality between Las Adjuntas and La Osa, Andrés Bello Municipality, Mérida State (8.6487°N, 71.7900°W; WGS 84), elevation 1551 m (Locality 1 in Fig. 2A). The third specimen is an adult male (CVULA IV-4541, SVL = 436 mm, TL = 142 mm), collected by Pedro Durant and Alba Díaz on 5 July 1985 at Hacienda Santa Rosa, Santa Bárbara del Zulia, Colón Municipality, Zulia State (8.7967°N, 71.7900°W; WGS 84), elevation 75 m (Locality 5 in Fig. 2A).

These new reports of occurrences for *Erythrolamprus epinephelus bimaculatus* extend its geographic distribution in Venezuela. The locality of CVULA IV-4321 (Locality 1 in Fig. 2A) is at the Los Llanos flank or the vertiente llanera of the CM (Arismendi, 2007) and corresponds to a Montane High Evergreen Forest Ecosystem (Ataroff and Sarmiento, 2004). This is the second record of *E. e. bimaculatus* in Venezuela and extends the distribution 29 km SW from the previously known locality (Fig. 2A). In addition, the locality of CVULA IV-8526 (Locality 2 in Fig. 2A) is in the Sierra Nevada of the CM and corresponds to a Páramo Ecosystem (Ataroff and Sarmiento, 2004). This is the third record for *E. e. bimaculatus* in Venezuela, which extends the distribution 48 km E from the nearest
locality. Furthermore, this record extends the elevational distribution of the species in the country upwards by ca. 700 m. Additionally, it is the first record for this species in a Páramo Ecosystem (Fig. 2B) in Venezuela.

The new occurrences of *Erythrolamprus epinephelus opisthotaenius* also extend the geographic distribution in Venezuela. The locality of CVULA IV-4273 (Locality 3 in Fig. 2A) is in the piedemonte llanero of the CM, and corresponds to a Submontane Humid Forest Ecosystem (Ataroff and Sarmiento, 2004). This record fills the distribution gap between Misisi, Trujillo State, and the City of Mérida in Mérida State. It extends the distribution of *E. e. opisthotaenius* 70 km S from its nearest locality (Fig. 2). The locality of MHNLS 22008 (Locality 4 in Fig. 2A) is in the vertiente lacustre of the CM, and corresponds to a Montane Low Evergreen Forest Ecosystem (Ataroff and Sarmiento, 2004). This record fills the distribution gap between the previous locality (Hacienda Santa Rosa, Zulia State) and the Laguna El Joque, Mérida State. The locality of CVULA IV-4541 (Locality 5 in Fig. 2A) is in the northwestern part of the CM, and corresponds to an impacted area (i.e., pastureland, mainly for cattle raising; Huber and Oliveira-Miranda, 2010). This record extends the distribution of *E. e. opisthotaenius* 72 km NW from the nearest known locality. Furthermore, this is the lowest elevational record for *E. epinephelus* in Venezuela (95 m less than the previous lowest record; Table 1).

![Figure 1. Museum specimens of *Erythrolamprus epinephelus* from Venezuela. (A) Dorsal and (B) ventral view of *E. e. bimaculatus* (CVULA IV-4321) from Boca de Monte, Táchira State, Venezuela. (C) Dorsal and (D) ventral view of *E. e. opithotaenius* (CVULA IV-4273) from a locality 5 km S Barinitas, Barinas State, Venezuela. The black bar represents 10 mm. Photos by Javier García-Gutierrez.](image-url)
The new occurrences of *E. epinephelus* extend the elevational distribution of this species in Venezuela to both higher and lower levels. Natera et al. (2015) established 2300 m as the upper elevation limit for *E. epinephelus* in Venezuela but did not provide associated localities, voucher specimens, or references. We therefore considered 2278 m (CVULA IV-771 from Monterrey, El Valle, Mérida State; Dixon, 1983) as the previous, properly documented upper elevational limit.

Thus, the new records reported here expand the overall elevational distribution of *E. epinephelus* in Venezuela to cover elevations from 75–2980 m (Fig. 2A). The record for CVULA IV-4541 from Santa Bárbara del Zulia, Zulia State, represents the first record of *E. epinephelus* for the Maracaibo Lake Bioregion (*sensu* Rivero, 1961). This record increases the diversity of species and subspecies of snakes to 35 in that bioregion, based on Natera et al. (2015). The Venezuelan specimens of *E. epinephelus*...
were predominantly found in semi-deciduous forest and evergreen forest, in contrast with the habitat mentioned by Acevedo et al. (2016). The highest record reported here adds a new habitat type (Páramo) for this species in Venezuela (Fig. 2B).

Lancini and Kornacker (1989) mentioned that the elevational distribution of snakes in Venezuela is poorly known because explorations have generally been carried out up to ca. 2000 m. *Atractus ventrimaculatus*, *E. epinephelus*, and *Chironius monticola* are the known species that occur at the upper montane floor (elevations of 2000–2700 m *sensu* Ataroff and Sarmiento, 2004) in the CM (Natera et al., 2015). According to Natera et al. (2015), specimens of an undescribed species related to *A. ventrimaculatus* represent the highest record (2966 m) in the Venezuelan Andes for *Atractus*. However, La Marca and Soriano (2004) reported one specimen of *C. monticola* at Páramo El Tambor, Mérida State, elevation ca. 3000 m (Universidad de Los Andes, Laboratorio de Biogeografía, Collection of Amphibians and Reptiles, specimen number 2057, likely a female, SVL = 650 mm, TL = 245 mm), which is the highest known record for a snake in Venezuela. Consequently, the record reported here for CVULA IV-8526 at 2980 m represents the highest record for *Erythrolamprus* in Venezuela and the second highest for a snake in Venezuela.

The occurrence of *E. epinephelus* in central and eastern Venezuela is uncertain. Navarrete et al. (2009) listed this taxon for Aragua State (in addition to the aforementioned states), yet these authors provided neither the locality nor voucher specimen number associated with that record. Therefore, specimens of *E. epinephelus* from Venezuela are known from Barinas, Mérida, Trujillo, and Zulia States (Table 1). Finally, these records highlight both the need to carry out herpetological expeditions in the Venezuelan highlands (higher than 2000 m), as well as the importance of scientific collections as a source of scientific information.

Acknowledgments. I would like to thank Jesús Molinari for kindly providing the specimen from the Páramo de San José. Javier García-Gutierrez assistance with taxonomic identification and photographed and measured of some specimens. Julia Smith provided help with German translation. Santiago Castroviejo-Fisher, Enrique La Marca, Fernando Rojas-Runjaic, and Pedro Ivo Simões provided valuable comments on the manuscript. Enrique La Marca kindly provided the photograph from Páramo de San José. Finally, I would also like to thank the Coordinación de Aperfeiçoamento de Pessoal de Nível Superior (CAPES; process number 1578956) for financial assistance.

References

Accepted by Javier Cortés Suárez