Fauna of New Zealand

Editorial Advisory Group

Members at Entomology Division
Department of Scientific and Industrial Research
Mount Albert Research Centre
Private Bag, Auckland, New Zealand

Ex officio
Director – Mr J. F. Longworth
Group leader,* Systematics Section – Dr G. W. Ramsay

Co-opted from within Systematics Section
Dr T. K. Crosby, Dr B. A. Holloway

Universities representative*

Dr G. W. Gibbs
Zoology Department, Victoria University of Wellington
Private Bag, Wellington, New Zealand

Museums representative*

Dr J. C. Yaldwyn
Director, National Museum of New Zealand
Private Bag, Wellington, New Zealand

Overseas representative*

Dr J. F. Lawrence
CSIRO Division of Entomology
P.O. Box 1700, Canberra City, ACT 2601, Australia

*on a rotational basis

Series Editor

Mr C. T. Duval
Systematics Section, Entomology Division
Department of Scientific and Industrial Research
Mount Albert Research Centre
Private Bag, Auckland, New Zealand
Fauna of New Zealand
Number 7

Cryptostigmata
(Arachnida: Acari)
- a concise review

M. Luxton
Department of Biology, Liverpool Polytechnic
Byrom Street, Liverpool L3 3AF, England
LUXTON, M.
(Fauna of New Zealand, ISSN 0111-5383; 7)
I. Title II. Series
UDC 595.423(931)

Date of publication: see back cover of Number 8

Suggested form of citation
Fauna of New Zealand [number 7]

This publication was produced by offset lithography. The author's text was supplied as word processor output stored on diskette, and after editing and style coding was phototypeset at the N.Z. Government Printing Office. Times New Roman type is used for most of the text; major headings and figure labels are set in Univers; Garamond and Geneva are used in the titles.

The Editorial Advisory Group and the Series Editor acknowledge the following co-operation.

DSIR, Mt Albert Research Centre:
Mr D.W. Helmore – front cover motif, figure labelling
Mr M.B.B. Irwin – photoreduction of line figures
Mrs H.A. Whelan – computer operation and file management

Science Information Publishing Centre, DSIR:
Dr N. Hawcroft – style coding and phototypesetting
Mr R.N. Holdaway – style coding and phototypesetting

Front cover: The mite depicted is Ramsayellus grandis (Hammer, 1967), recently recorded on kiwifruit

© Crown Copyright

Published by Science Information Publishing Centre, DSIR
P.O. Box 9741, Wellington, New Zealand
ABSTRACT
Three hundred and sixty-six species of Cryptostigmata (= Oribatei or Oribatida) in 160 genera and 58 families are recorded from the New Zealand region. Four new families are proposed (Maorizetidae, Austrachipteriidae, Onychobatidae, Ramsayellidae), and six new genera are erected (Baioppia, Campbellopia, Nesoppia, Pravoppia, Paraphysobates, Sicaxylobates). Keys are provided to all species; these are supported by figures explaining morphology, habitus figures representing all genera, and notes on distribution, biogeography, morphology, and techniques.

CHECKLIST OF TAXA

<table>
<thead>
<tr>
<th>Cohort PALAEOSOMATA</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superfamily PALAEACAROIDEA Grandjean, 1954</td>
<td>25</td>
</tr>
<tr>
<td>Family ACARONYCHIDAE Grandjean, 1932</td>
<td>25</td>
</tr>
<tr>
<td>Genus Acaronychus Grandjean, 1932</td>
<td>25</td>
</tr>
<tr>
<td>Genus Stomacarus Grandjean, 1952</td>
<td>25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Family</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>campbellensis (Wallwork, 1966)</td>
<td>25</td>
</tr>
<tr>
<td>ciliosus Luxton, 1982</td>
<td>25</td>
</tr>
<tr>
<td>ligamentifer (Hammer, 1967)</td>
<td>25</td>
</tr>
<tr>
<td>watsoni (Travè, 1964)</td>
<td>25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Family</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADELPHACARIDAE Grandjean, 1954</td>
<td>25</td>
</tr>
<tr>
<td>Genus Aphelacarus Grandjean, 1932</td>
<td>25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cohort EUPTYCTIMA</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superfamily EUPHTHIRACAROIDEA</td>
<td>25</td>
</tr>
<tr>
<td>Grandjean, 1967</td>
<td>25</td>
</tr>
<tr>
<td>Family EUPHTHIRACARIDAE Jacot, 1930</td>
<td>25</td>
</tr>
<tr>
<td>Genus Microtritia Märkel, 1964</td>
<td>25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Family</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIBOTRITIIDAE Grandjean, 1954</td>
<td>25</td>
</tr>
<tr>
<td>Genus Indotritia Jacot, 1929</td>
<td>25</td>
</tr>
<tr>
<td>aotearoana Ramsay, 1966</td>
<td>25</td>
</tr>
<tr>
<td>Genus Mesotritia Forsslund, 1963</td>
<td>25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Superfamily PHTHIRACAROIDEA</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grandjean, 1954</td>
<td>25</td>
</tr>
<tr>
<td>Family PHTHIRACARIDAE Perty, 1841</td>
<td>25</td>
</tr>
<tr>
<td>Genus Hoplophorella Berlese, 1923</td>
<td>25</td>
</tr>
<tr>
<td>Genus Notophthiracarus Ramsay, 1966</td>
<td>25</td>
</tr>
</tbody>
</table>

| australis Ramsay, 1966 | 25 |

<table>
<thead>
<tr>
<th>Cohort ENARTHRONOTA</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superfamily BRACHYCHTHONOIDEA Grandjean, 1969</td>
<td>26</td>
</tr>
<tr>
<td>Family BRACHYCHTHONIIDAE Balogh, 1943</td>
<td>26</td>
</tr>
<tr>
<td>Genus Brachychochthonius Jacot, 1938</td>
<td>26</td>
</tr>
<tr>
<td>jugatus Jacot, 1938</td>
<td>26</td>
</tr>
<tr>
<td>novazealandicus (Hammer, 1966) new combination</td>
<td>26</td>
</tr>
<tr>
<td>Genus Liocchthonius van der Hamm, 1959</td>
<td>27</td>
</tr>
<tr>
<td>altimonticola (Hammer, 1958)</td>
<td>27</td>
</tr>
<tr>
<td>alts (Hammer, 1958)</td>
<td>27</td>
</tr>
<tr>
<td>jimbriatissimus (Hammer, 1958)</td>
<td>27</td>
</tr>
<tr>
<td>idem Hammer, 1966</td>
<td>27</td>
</tr>
<tr>
<td>saltaensis (Hammer, 1958)</td>
<td>27</td>
</tr>
</tbody>
</table>

Superfamily COSMOCHTHONOIDEA Grandjean, 1969	27
Family COSMOCHTHONIIDAE Grandjean, 1947	27
Genus Cosmochthonius Berlese, 1910	27
semiareolatus Hammer, 1966	27

Superfamily HYPOCHTHONOIDEA Balogh, 1961	27
Family ENIOCHTHONIIDAE Grandjean, 1947	27
Genus Hypochthoniella Berlese, 1910	27
minutissima (Berlese, 1904)	27
Family HYPOCHTHONIIDAE Berlese, 1910.................. 27
Genus Hypochthonius Koch, 1836.................. 27
 luteus Oudemans, 1913

Cohort NOTHRONATA.............................. 28
Superfamily HERMANNOIDEA Balogh, 1972.................. 28
Family HERMANNIIDAE Sellnick, 1928........... 28
Genus Phyllhermannia Berlese, 1917........ 28
 foliata Hammer, 1966
 mollis Hammer, 1966
 phyllophora (Michael, 1908)
 rubra Hammer, 1966

Superfamily NANHERMANNOIDEA Balogh, 1972.......... 28
Family NANHERMANNIIDAE Sellnick, 1928........ 28
Genus Nanhermannia Berlese, 1913.......... 28
 acutisetosa Hammer, 1966
 nana (Nicolet, 1855)
 tenuicoma Hammer, 1966

Superfamily NOTHROIDEA Grandjean, 1954............... 28
Family CAMISIIDAE Oudemans, 1900........... 28
Genus Camisia von Heyden, 1826........ 28
 segnis (Hermann, 1804)
Genus Heminothrus Berlese, 1913........ 28
 microclava Hammer, 1966
 traversus Hammer, 1966
Genus Platynothrus Berlese, 1913........ 29
 major Hammer, 1966
 peltifer (Koch, 1840)
 skottsbergii Trägårdh, 1931
 tenuicula Hammer, 1966

Family CROTONIIDAE Thorell, 1876........ 29
Genus Austronothrus Hammer, 1966........ 29
 curviseta Hammer, 1966
Genus Crotonia Thorell, 1876........ 29
 brevicornuta (Wallwork, 1966)
 caudalis (Hammer, 1966)
 coronata Luxton, 1982
 cophinaria (Michael, 1908)
 cupulata Luxton, 1982
 longibulbula Luxton, 1982
 obtecta (Pickard-Cambridge, 1875)
 reticulata Luxton, 1982
 tuberculata Luxton, 1982
 unguifera (Michael, 1908)

Genus Holonothrus Wallwork, 1963........... 30
 concavus Wallwork, 1966
 foliatus Wallwork, 1963
 pulcher Hammer, 1966

Family MALACONOTHRIDAE Berlese, 1916............... 31
Genus Fossonothrus Hammer, 1962........ 31
 novazelandiae Hammer, 1966
Genus Malaconothrus Berlese, 1904........ 31
 indifferens Hammer, 1966
 keriensis Hammer, 1966
 zealandicus Hammer, 1966
Genus Trimalaconothrus Berlese, 1916........ 31
 angustirostrum Hammer, 1966
 crispus Hammer, 1962
 longirostrum Hammer, 1966
 novus (Sellnick, 1921)
 opisthosta Hammer, 1966
 oxyrhinus Hammer, 1962
 platyrhinus Hammer, 1962
 succulus Hammer, 1966
 tonkini Luxton, 1982

Genus Zeanothrus Hammer, 1966........... 32
 elegans Hammer, 1966

Family NOTHRIDAE Berlese, 1896........ 32
Genus Nothrus Koch, 1836........ 32
 biciliatus Koch, 1841
 silvestris Nicolet, 1855
Genus Novonothrus Hammer, 1966........ 32
 flagellatus Hammer, 1966
 pupuensis Hammer, 1966

Family TRHYPOCHTHONIIDAE Willmann, 1931........... 33
Genus Allonothrus van der Hammen, 1953........ 33
Genus Macronothrus Trägårdh, 1931........ 33
 nasalis Willmann, 1933
Genus Trhypochthonius Berlese, 1904........ 33
 excavatus (Willman, 1919)

Cohort CIRCUMDEHISCENTIAE
(Pycnonoticae)................................. 33
Superfamily AMERONOTHROIDEA Balogh, 1961........ 33
Family CYMBAEREMAEIDAE Sellnick, 1928........ 33
Genus Bulleremaeus Hammer, 1966........ 33
 reticulatus Hammer, 1966
 tuberculatus Hammer, 1966
Genus Capillibates Hammer, 1966........ 33
 stagaardi Hammer, 1966
Genus *Scapheremaenus* Berlese, 1910
- *emarginatus* Hammer, 1966
- *insularis* Hammer, 1966
- *patella* (Berlese, 1910)

Family FORTUYNIIDAE van der Hammen, 1960
- *emarginatus* (Hammer, 1966)
- *insularis* (Hammer, 1966)

Genus *Scapheremaenus* Berlese, 1910
- *patella* (Berlese, 1910)

Family FORTUYNIIDAE van der Hammen, 1960
- *emarginatus* (Hammer, 1966)
- *insularis* (Hammer, 1966)

Genus *Scapheremaenus* Berlese, 1910
- *patella* (Berlese, 1910)

Family FORTUYNIIDAE van der Hammen, 1960
- *emarginatus* (Hammer, 1966)
- *insularis* (Hammer, 1966)

Genus *Scapheremaenus* Berlese, 1910
- *patella* (Berlese, 1910)

Superfamily EREMULIDAE Grandjean, 1965
- *clavasetosa* Hammer, 1966
- *diversisetosa* Hammer, 1966
- *longiseta* Hammer, 1966
- *microsetosa* Hammer, 1966
<table>
<thead>
<tr>
<th>Superfamily</th>
<th>LIODOIDEA Balogh, 1961</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Family</td>
<td>LIODIDAE Grandjean, 1954</td>
<td>40</td>
</tr>
<tr>
<td>Genus</td>
<td>Liodes von Heyden, 1826</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>nigricans</td>
<td></td>
</tr>
<tr>
<td>Superfamily</td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>OPPIOIDEA Balogh, 1961</td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>Family</td>
<td>AUTOGNETIDAE Grandjean, 1960</td>
<td>40</td>
</tr>
<tr>
<td>Genus</td>
<td>Austrognetia Balogh & Csiszar, 1963</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>multipilosa Balogh & Csiszar, 1963</td>
<td></td>
</tr>
<tr>
<td></td>
<td>quadridentata Hammer, 1966</td>
<td></td>
</tr>
<tr>
<td>Family</td>
<td>OPPIIDAE Grandjean, 1954</td>
<td>40</td>
</tr>
<tr>
<td>Genus</td>
<td>Acutoppia Balogh, 1983</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>cassiniseta (Hammer, 1968)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>jelevae (Hammer, 1968)</td>
<td></td>
</tr>
<tr>
<td>Genus</td>
<td>Americoppia Hammer, 1961</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>longicrava Hammer, 1962</td>
<td></td>
</tr>
<tr>
<td></td>
<td>woolleyi Hammer, 1968</td>
<td></td>
</tr>
<tr>
<td>Genus</td>
<td>Arcoppia Hammer, 1977</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>arcualis (Berlesc, 1913)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>winkleri (Hammer, 1968)</td>
<td></td>
</tr>
<tr>
<td>Genus</td>
<td>Austroppia Balogh, 1983</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>crozetensis (Richters, 1908)</td>
<td></td>
</tr>
<tr>
<td>Genus</td>
<td>Baioppia new genus</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>moritzi (Hammer, 1968) new combination</td>
<td></td>
</tr>
<tr>
<td>Genus</td>
<td>Belloppia Hammer, 1968</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>beemansensis (Wallwork, 1964) new combination</td>
<td></td>
</tr>
<tr>
<td></td>
<td>evansrei (Wallwork, 1968)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>shealsi Hammer, 1968</td>
<td></td>
</tr>
<tr>
<td></td>
<td>wallworki Hammer, 1968</td>
<td></td>
</tr>
<tr>
<td>Genus</td>
<td>Brachioppelia Hammer, 1962</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>hartensteini (Hammer, 1968)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>higginsi (Hammer, 1968)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>rajsii Hammer, 1968</td>
<td></td>
</tr>
<tr>
<td></td>
<td>walkeri (Hammer, 1968)</td>
<td></td>
</tr>
<tr>
<td>Genus</td>
<td>Campbelloppia new genus</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>diaphora (Wallwork, 1964) new combination</td>
<td></td>
</tr>
<tr>
<td>Genus</td>
<td>Convergoppia Balogh, 1983</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>pletzeni (Hammer, 1968)</td>
<td></td>
</tr>
<tr>
<td>Genus</td>
<td>Globoppia Hammer, 1962</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>campbellensis Wallwork, 1964</td>
<td></td>
</tr>
<tr>
<td></td>
<td>gressitii Wallwork, 1964</td>
<td></td>
</tr>
<tr>
<td></td>
<td>nidicola Hammer, 1968</td>
<td></td>
</tr>
<tr>
<td>Genus</td>
<td>Gressittoppia Balogh, 1983</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>baderi (Hammer, 1968)</td>
<td></td>
</tr>
<tr>
<td>Genus</td>
<td>Hamoppia Hammer, 1968</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>lionsi Hammer, 1968</td>
<td></td>
</tr>
<tr>
<td></td>
<td>thamdrugi Hammer, 1968</td>
<td></td>
</tr>
<tr>
<td>Genus</td>
<td>Insculptoppia Subias, 1980</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>suclui (Hammer, 1968)</td>
<td></td>
</tr>
<tr>
<td>Genus</td>
<td>Laminoppia Hammer, 1968</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>blocki Hammer, 1968</td>
<td></td>
</tr>
<tr>
<td>Genus</td>
<td>Lanceoppia Hammer, 1962</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>banksi Hammer, 1968</td>
<td></td>
</tr>
<tr>
<td></td>
<td>becki Hammer, 1968</td>
<td></td>
</tr>
<tr>
<td></td>
<td>bertlesi Hammer, 1968</td>
<td></td>
</tr>
<tr>
<td></td>
<td>bertheti Hammer, 1968</td>
<td></td>
</tr>
<tr>
<td></td>
<td>cziizzaae Hammer, 1968</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ewingi Hammer, 1968</td>
<td></td>
</tr>
<tr>
<td></td>
<td>feideri (Hammer, 1968)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>haarlovi (Hammer, 1968)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>jacoti Hammer, 1968</td>
<td></td>
</tr>
<tr>
<td></td>
<td>knullei Hammer, 1968</td>
<td></td>
</tr>
<tr>
<td></td>
<td>luxioni Hammer, 1968</td>
<td></td>
</tr>
<tr>
<td></td>
<td>maerkelti Hammer, 1968</td>
<td></td>
</tr>
<tr>
<td></td>
<td>mahunkai Hammer, 1968</td>
<td></td>
</tr>
<tr>
<td></td>
<td>menkei Hammer, 1968</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pereziniger (Hammer, 1968)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pipill Hammer, 1968</td>
<td></td>
</tr>
<tr>
<td></td>
<td>poppi Hammer, 1968</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ramsayi Hammer, 1968</td>
<td></td>
</tr>
<tr>
<td></td>
<td>rigidiseta Hammer, 1968</td>
<td></td>
</tr>
<tr>
<td></td>
<td>schusteri Hammer, 1968</td>
<td></td>
</tr>
<tr>
<td></td>
<td>schweizeri Hammer, 1968</td>
<td></td>
</tr>
<tr>
<td></td>
<td>sellnicki Hammer, 1968</td>
<td></td>
</tr>
<tr>
<td></td>
<td>seydi Hammer, 1968</td>
<td></td>
</tr>
<tr>
<td></td>
<td>strenzkei Hammer, 1968</td>
<td></td>
</tr>
<tr>
<td></td>
<td>thori Hammer, 1968</td>
<td></td>
</tr>
<tr>
<td></td>
<td>turki (Hammer, 1968) new combination</td>
<td></td>
</tr>
<tr>
<td></td>
<td>vanderhammeni Hammer, 1968</td>
<td></td>
</tr>
<tr>
<td></td>
<td>vaneki Hammer, 1968</td>
<td></td>
</tr>
<tr>
<td></td>
<td>willmanni Hammer, 1968</td>
<td></td>
</tr>
<tr>
<td></td>
<td>woodringi Hammer, 1968</td>
<td></td>
</tr>
<tr>
<td>Genus</td>
<td>Loboppia Balogh, 1983</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>covarrubiasi (Hammer, 1968)</td>
<td></td>
</tr>
<tr>
<td>Genus</td>
<td>Machuella Hammer, 1961</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>pyriformis Hammer, 1968</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ventrisetosa Hammer, 1961</td>
<td></td>
</tr>
<tr>
<td>Genus</td>
<td>Membranoppia Hammer, 1968</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>karppineni Hammer, 1968</td>
<td></td>
</tr>
<tr>
<td></td>
<td>krtvoluzkyl Hammond, 1968</td>
<td></td>
</tr>
<tr>
<td></td>
<td>stnikove Losnikov, 1968</td>
<td></td>
</tr>
<tr>
<td>Genus</td>
<td>Microoppia Balogh, 1983</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>minus (Paoli, 1908)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>minuitissima (Sellnick, 1950)</td>
<td></td>
</tr>
<tr>
<td>Genus</td>
<td>Miopippia Hammer, 1968</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>zealandica Hammer, 1968</td>
<td></td>
</tr>
<tr>
<td>Nesoppia new genus</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tuxeni (Hammer, 1968) new combination</td>
<td></td>
</tr>
<tr>
<td>Genus</td>
<td>Operculoppia Hammer, 1968</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>kunsti Hammer, 1968</td>
<td></td>
</tr>
<tr>
<td>Genus</td>
<td>Oppiella Jacot, 1937</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>dubia Hammer, 1962</td>
<td></td>
</tr>
<tr>
<td></td>
<td>nova (Oudemans, 1902)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>obsoleta (Paoli, 1908)</td>
<td></td>
</tr>
<tr>
<td>Genus</td>
<td>Oxyoppia Balogh & Mahunka, 1969</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>suramericana (Hammer, 1958)</td>
<td></td>
</tr>
</tbody>
</table>
Genus *Paroppia* Hammer, 1968
lebruni Hammer, 1968
Genus *Pletzenoppia* Balogh, 1983
rafalskii (Hammer, 1968) new combination
Genus *Polyoppia* Hammer, 1968
balohti Hammer, 1968
Pravoppia new genus
disjuncta (Wallwork, 1964) new combination
Genus *Processoppia* Balogh, 1983
oudemansi (Hammer, 1968)
Genus *Pletzenoppia* Balogh, 1983
rafalskii (Hammer, 1968) new combination
Genus *Polyoppia* Hammer, 1968
balohti Hammer, 1968
Pravoppia new genus
disjuncta (Wallwork, 1964) new combination
Genus *Processoppia* Balogh, 1983
oudemansi (Hammer, 1968)
Genus *Pletzenoppia* Balogh, 1983
rafalskii (Hammer, 1968) new combination
Genus *Polyoppia* Hammer, 1968
balohti Hammer, 1968
Pravoppia new genus
disjuncta (Wallwork, 1964) new combination
Genus *Processoppia* Balogh, 1983
oudemansi (Hammer, 1968)
Genus *Pletzenoppia* Balogh, 1983
rafalskii (Hammer, 1968) new combination
Genus *Polyoppia* Hammer, 1968
balohti Hammer, 1968
Pravoppia new genus
disjuncta (Wallwork, 1964) new combination
Genus *Processoppia* Balogh, 1983
oudemansi (Hammer, 1968)

Superfamily OTOCEPHEOIDEA Balogh, 1972

Family OTOCEPHEIDAE Balogh, 1961

Genus *Clavazetes* Hammer, 1966
decorus Hammer, 1966
Genus *Neotocepheus* Hammer, 1966
colliger Hammer, 1966
Genus *Ptenotocepheus* Hammer, 1966
deliciaissimus Hammer, 1966
mollicoma Hammer, 1966
Genus *Pseudotocepheus* Balogh, 1960
curiseta Hammer, 1966
foveolatus Hammer, 1966
punctatus Hammer, 1966
tenutsa Hammer, 1966

Superfamily POLYPTEROZETOIDEA Balogh, 1961

Family EUTEGAEIDAE Balogh, 1965

Genus *Bornebuschia* Hammer, 1966
peculiaris Hammer, 1966
Genus *Compactozetes* Hammer, 1966
niger Hammer, 1966
retoruensis Hammer, 1966
Genus *Eutegaeus* Berlese, 1917
boistocki (Michael, 1908)
curviseta Hammer, 1966
membraniger Hammer, 1966
pinnatus Hammer, 1966
radiatus Hammer, 1966
stylesi Hammer, 1966
Genus *Neseutegaeus* Woolley, 1965
angustus Hammer, 1966
consimilis Hammer, 1966
distentus Hammer, 1966
latus Hammer, 1966
spinatus Woolley, 1965
Genus *Nodocepheus* Hammer, 1958
dentatus Hammer, 1958
Genus *Pterozetes* Hammer, 1966
novazealandicus Hammer, 1966

Family TUMEROZETIDAE Hammer, 1966

Genus *Topalia* Balogh & Csiszar, 1963
clavata Hammer, 1966
granulata Hammer, 1966
velata Hammer, 1966
Genus *Tumerozetes* Hammer, 1966
bifurcatus Hammer, 1966
circularis Hammer, 1966
indistinctus Hammer, 1966
parallelus Hammer, 1966
punilis Hammer, 1966
Cohort CIRCUMDEHISCENTIAE
(Poronoticae)... 56
Superfamily CERATOZETOIDEA Balogh, 1961 56
AUSTRACHIPTERIIDAE new family............... 56
Genus Austrachipteria Balogh & Mahunka, 1966 56
(= Parahypozetes Hammer, 1967 new synonymy)
 bidentatus (Hammer, 1967)
 furcatus (Hammer, 1967)
 giganteus (Hammer, 1967)
 grandis (Hammer, 1967)
 lobatus (Hammer, 1967)
 macrodenticus (Hammer, 1967)
 maximus (Hammer, 1967)
 quadridentatus (Hammer, 1967)

Family CERATOZETIDAE Jacot, 1925 57
Genus Ceratozetes Berlese, 1908 57
 bicornis Hammer, 1967
 gracilis (Michael, 1884)
 hamobatoides Hammer, 1967
 mediobris Berlese, 1908
Genus Edwardzetes Berlese, 1914 57
 novazealandicus Hammer, 1967
Genus Macrogena Wallwork, 1966 57
 crassa Hammer, 1967
 monodactyla Wallwork, 1966
 rudentiger Hammer, 1967
Genus Magellozetes Hammer, 1962 58
 clathratus Hammer, 1967
Genus Parafurcobates Hammer, 1967 58
 cuspidatus Hammer, 1967
Genus Tutorozetes Hammer, 1967 58
 termophilus Hammer, 1967

Family CHAMOBATIDAE Grandjean, 1954 58
Genus Pedunculozetes Hammer, 1962 58
 andinus Hammer, 1962
 minutus Hammer, 1967

Family MYCOBATIDAE Grandjean, 1954 59
Genus Antarctozetes Balogh, 1961 59
 intermedius (Hammer, 1967)
 longicatus (Hammer, 1967)
 luteus (Hammer, 1967)
Genus Balogholobates Hammer, 1967 59
 nudus Hammer, 1967
 parvogloboerus Hammer, 1967
Genus Cryptobothria Wallwork, 1963 59
 monodactyla Wallwork, 1963
Genus Mycozetes Spain, 1968 59
 oleariae Spain, 1968
Genus Neomycozetes Wallwork, 1963 59
 tridentatus Wallwork, 1963
Genus Puncoribates Baloge, 1908 60
 manzanetensis Hammer, 1958
 punctum (Koch, 1839)

ONYCHOBATIDAE new family 60
Genus Onychobates Hammer, 1967 60
 didicola Hammer, 1967

RAMSAYELLIDAE new family 60
Genus Ramsayellus Baloge, 1972 60
 grandis (Hammer, 1967)

Superfamily GALUMNOIDEA Baloge, 1961 60
Family GALUMNIDAE Jacot, 1925 60
Genus Acrogalumna Grandjean, 1936 60
 longitumna (Berlese, 1904)
Genus Allogalumna Grandjean, 1936 61
 novazealandica Hammer, 1968
Genus Galumna von Heyden, 1826 61
 microsimum Hammer, 1968
 rugosa Hammer, 1968
 scaber Hammer, 1968
Genus Pergalumna Grandjean, 1936 61
 remota (Hammer, 1968)
 reniformis Hammer, 1968
 silvestris Hammer, 1968

Family PARAKALUMMIDAE Grandjean, 1936 61
Genus Neoribates Berlese, 1914 61
 barbatus Hammer, 1968
Genus Porokalumna Wallwork, 1966 62
 rotunda (Wallwork, 1963)

Superfamily MICROZETOIDEA Baloge, 1965 62
Family MICROZETIDAE Grandjean, 1936 62
Genus Cuspitegula Hammer, 1966 62
 stellifer Hammer, 1966

Superfamily ORIBATULOIDEA Woolley, 1956 62
Family ORIBATELLIDAE Grandjean, 1925 62
Genus Lamellobates Hammer, 1958 62
 palustris Hammer, 1958

Family TEGORIBATIDAE Grandjean, 1954 62
Paraphysobates new genus 62
 monodactylus (Hammer, 1966) new combination

Superfamily ORIBATELLOIDEA Woolley, 1956 62
Family HAPLOZETIDAE Grandjean, 1936 62
Genus Angulizzetes Hammer, 1967 62
 rostratus Hammer, 1967

-10-
Genus *Lauritzenia* Hammer, 1958 62
 acutirostrum Hammer, 1968
 rotundirostrum Hammer, 1968

Genus *Magnobates* Hammer, 1967 63
 flagellifer Hammer, 1967

Genus *Peloribates* Berlese, 1908 63
 fragilis Hammer, 1967
 magnisetoideus Hammer, 1967

Genus *Rostrozetes* Sellnick, 1925 63
 foveolatus Sellnick, 1925

Sticaxyllobates new genus 63
 sicafer (Hammer, 1968) new combination

Genus *Tobobates* Hammer, 1961 63
 acutissimus (Hammer, 1967) new combination
 anareensis (Dalenius & Wilson, 1958)
 antarcticus Wallwork, 1966
 capita Hammer, 1968
 communis Hammer, 1967
 elegans (Hammer, 1958)
 latus Hammer, 1967
 maceronyx Hammer, 1967
 microseta Hammer, 1968
 minimus Hammer, 1967
 ovatus Hammer, 1967

Genus *Xylobates* Jacot, 1929 64
 capucinus (Berlese, 1908)

Family *NEOTRICHIOZETIDAE* Balogh, 1965 64

Genus *Neotrichozetes* Travé, 1961 64
 spinulosa (Michael, 1908)

Family *ORIBATULIDAE* Thor, 1929 65

Genus *Crassoribatula* Hammer, 1967 65
 maculosa Hammer, 1967

Genus *Ingella* Hammer, 1967 65
 bullager Hammer, 1967

Genus *Liebstadia* Oudemans, 1906 65
 similis (Michael, 1888)

Genus *Maculobates* Hammer, 1962 65
 longipilus Hammer, 1967
 longus Hammer, 1967
 luteomarginatus Hammer, 1967
 luteus Hammer, 1967
 magnus Hammer, 1967
 minor Hammer, 1967
 vulgaris Hammer, 1967

Genus *Sellnicia* Oudemans, 1927 66
 caudata (Michael, 1908)

Genus *Zygoribatula* Berlese, 1917 66
 connexa (Berlese, 1904)
 magna Ramsay, 1966
 nova zealantica Hammer, 1967
 terrificola van der Hammen, 1952

Family *SCHELORIBATIDAE* Grandjean, 1954 66

Genus *Campbellobates* Wallwork, 1964 66
 acanthis Wallwork, 1964
 aureus Hammer, 1967
 luteohumeralis Hammer, 1967
 occultus Hammer, 1967

Genus *Grandjeanobates* Hammer, 1967 67
 novazealandicus Hammer, 1967

Genus *Incabates* Hammer, 1961 67
 angustus Hammer, 1967

Genus *Scheloribates* Berlese, 1908 67
 aequalis Hammer, 1967
 anzacensis Hammer, 1967
 conjuges Hammer, 1967
 crassus Hammer, 1967
 flagellatus Wallwork, 1966
 keriensis Hammer, 1967
 maorienis Hammer, 1968
 pacificus Hammer, 1967
 zealandicus Hammer, 1967

Genus *Setobates* Balogh, 1962 68
 medius Hammer, 1967
 (= *Setobates discors* Hammer, 1967 new synonymy)
 scheloribatoides (Ramsay, 1966)

Genus *Zeascheloribates* Luxton, 1982 68
 palustris Luxton, 1982

Superfamily *PASSALOZETOIDEA* Balogh, 1961 68

Family *PASSALOZETIDAE* Grandjean, 1954 68

Genus *Paraphauloppia* Hammer, 1967 68
 novazealandica Hammer, 1967

Genus *Subphauloppia* Hammer, 1967 68
 dentonyx Hammer, 1967

Family *SCUTOVERTICIDAE* Grandjean, 1954 69

Genus *Scutovertex* Michael, 1879 69
 sculptus Michael, 1879

Superfamily *PELOPOIDEA* Balogh, 1963 69

Family *PELOPIDAE* Ewing, 1917 69

Genus *Nesopelops* Hammer, 1973 69
 monodactylus (Hammer, 1966)
 punctatus (Hammer, 1966)

-11-
ACKNOWLEDGMENTS

I am most grateful to Dr M. Hammer of Fredensborg, Denmark, and Professor J.A. Wallwork (Westfield College, University of London) for their help and advice in the preparation of this manuscript, and to Sue Abraham for her skill and patience in typing it.

INTRODUCTION

The number of cryptostigmatid (= oribatid) species known from New Zealand has increased by more than 80% in the past 15–20 years, bringing the number to 366, distributed between 160 genera and 58 families. The list here presented (which includes records from Macquarie, Campbell, Auckland, and Chatham islands) is organised systematically, with keys to all species. The classification used is founded on that of Balogh (1972), with some alterations and additions. The higher classification follows that of Johnston (1982).

The first indigenous species to be described, Crotonia obtecta, was thought by its discoverer (Pickard-Cambridge 1875) to be a phalangid. Although the status of this species has been confirmed from the type specimens (Ramsay & Luxton 1967), no further records of it are known.

The next species to appear in the literature was ‘Leiosoma’ longipilis, described by Moniez (1894) from collections made in nests of an ant of the genus Monomoria by Smith (1895). This species was recorded in the lists of Lamb (1952) and Spain & Luxton (1971) as Liacarus longipilis, because Liacarus is a senior synonym of Leiosoma. However, the species is quite impossible to identify adequately from Moniez’s description, and it has accordingly been omitted from the present work. Hammer (1967), with some justification, suggested that it might be a species of Pseudoceratoppia, and in my view it is probably synonymous with P. sexsetosa Hammer. However, this cannot be confirmed unless Smith’s specimens are located.

Michael (1908) described a few cryptostigmatid mites collected from New Zealand, but it was not until the second half of this century that study of the group in New Zealand began properly to develop. Several workers have been responsible (Dalenius, Luxton, Ramsay, Spain, Wallwork, Woolley), but Marie Hammer is truly the doyenne of the subject for New Zealand.

Cryptostigmatids are an ancient group of arachnids with an evolutionary history extending back at least to the lower Jurassic period (Hammer & Wallwork 1979, Wallwork 1979). It has been postulated that the cosmopolitan genera inhabited the supercontinent of Pangaea before its break-up. Those genera of the southern continents which are absent from the northern are thought to have evolved during the time when the southern continents were united as Gondwanaland (Hammer & Wallwork 1979, Wallwork 1979). The more localised cryptostigmatid distribution patterns are shown by those forms which have evolved since the land masses attained their present positions (Wallwork 1979), and especially in those locations which are geographically remote. This is clearly evident in New Zealand, where there is a high degree of generic and specific endemism (Hammer & Wallwork 1979). One-third of New Zealand’s cryptostigmatid genera have not been reported from elsewhere (Hammer & Wallwork 1979), and 82% of the species are considered to be endemic (Hammer 1968).

The closest links appear to be with South America: 5.5% of the species are known only from these two regions, and 11% of their joint total cryptostigmatid faunas are held in common. Several of these genera have speciated in the subantarctic islands, which suggests the possibility of a previous faunal continuity between New Zealand and South America via Antarctica (Hammer 1968, Hammer & Wallwork 1979). New Zealand has few cryptostigmatid species in common with the islands of the Pacific or with Australia. This suggests that there has been little migration of cryptostigmatids to or from the nearer northern land masses through the agency of air currents or oceanic flotsam (Hammer 1982), or via a previous land connection. Some cryptostigmatids have undoubtedly been introduced to New Zealand through man’s activities.
although Hammer & Wallwork (1979) list only six possible introductions from Europe.

In New Zealand, mites are by far the most numerous arthropods in the soils of forests (McColl 1974, 1975) and grasslands (Manson 1959, McMillan 1969, Adams 1971, Luxton 1982b), and cryptostigmatids are usually the most abundant (McMillan 1969, Adams 1971, Luxton 1982b). Taxonomic difficulties have prevented the proper development of studies in cryptostigmatid community ecology, but pasture sites are reported to contain between 10 and 16 species (McMillan 1969, Adams 1971, Luxton 1982d, 1983b), and natural peat sites between 16 and 22 species (Luxton 1982c, 1983a). Study of cryptostigmatid mites in these grassland ecosystems should be an economic priority, since Ramsay (1966a) reported that 2-6% of the combined populations of two pasture species alone were infected with cysticercoiids of the sheep tapeworm Monieza expansa.

Cryptostigmatids also abound in the above-ground vegetation, the community in this zone largely differing from that of the soil layer. Spain & Harrison (1968) found 18 species associated with the foliage of Olearia colensoi, and Hammer (1967, 1968) recorded 10 species from tree foliage. Furthermore, although cryptostigmatids are air-breathing organisms they are not always strictly terrestrial. For example, in New Zealand 16 species have been recorded from a restiad peat substrate where the water table is always at or near the surface (Luxton 1982c), and 4 species have been described from the marine littoral zone living in algae and rock crevices, amongst barnacles, or in salt-marsh soil (Luxton 1967, 1984).

Cryptostigmata are the only group of mites in which diversity has been achieved in the absence of parasitism (Johnston 1982). Most species (panphytophages) feed on both microbes and the dead remains of higher plants, but some (macrophytophages) prefer to eat dead higher plant material alone, and others (microphytophages) subsist solely on a microbial diet. There have been only occasional reports of carnivory or herbivory.

Reproduction is frequently sexual, the females taking up stalked spermatophores placed by males on the substrate; but many species are parthenogenetic. There are 4 postembryonic developmental stages (1 larval, 3 nymphal) preceding the adult stage, and the juvenile stages are usually quite unlike the adult morphologically. Development times are modified by prevailing temperatures, but in the field are usually long (1 or more years from egg to adult). Each moult is prefaced by a pre-ecdysial resting stage during which the juvenile remains immobile for long periods; this may take up to one-third of the total development time. Usually eggs are laid, but some cryptostigmatids are viviparous.

Cryptostigmatid mites are the most successful of all soil arthropods. They have achieved an astonishing diversity in New Zealand, and deserve to be more widely studied both for their own sake and for the importance of the role they play in soil formation and as vectors of parasites. This contribution is a first attempt at consolidating the literature, and I hope it may encourage further developments in the study of the marvellous mite fauna of this interesting region.

MORPHOLOGY

In dorsal view the body of a cryptostigmatid mite has two parts, the prodorsum and the notogaster. The prodorsum covers the propodosoma, and the notogaster covers the hysterosoma (Figure 1). The propodosoma may be folded on to the hysterosoma like the blade of a penknife, or articulated but not foldable, or immovable attached. The prodorsum and the notogaster are separated by the dorsosejugal suture, which sometimes is interrupted medially or is completely absent.

Dorsal surface (Figures 1, 4, and 6)

Prodorsum. This region bears 4 or 5 pairs of setae:

(i) sensilli (ss)
(ii) interlamellars (in)
(iii) lamellars (le)
(iv) rostrals (ro)
(v) exobothridials (ex)

The sensilli are situated in an invagination, the bothridium (bo), which like the sensilli may sometimes be missing. The tip of the prodorsum is called the rostrum, and may bear teeth or incisions of taxonomic significance. Frequently, on each side of the prodorsum between the bothridium and the rostrum, there are thickened integumental extensions. If flat and raised above the prodorsum, or lamelliform and horizontally extended, they are known as lamellae (la) (Figures 8 and 9). If they are merely indistinct, rib-like ridges they are termed costae. The lamellae are frequently connected by a translamella (tls), the costae by a transcostula. The apex of a lamella is known as the cuspis (cu).

Notogaster (Figures 3, 5, and 7). In the higher cryptostigmatids the notogaster generally bears 10-14 pairs of setae, whereas in the more primitive forms it usually has 16 or more. Lee (1981, 1982) is in the process of homologising chaetotaxy, but currently 3 different notations are used, as follows.

1. Primitive cryptostigmatids with approximately 16 pairs of setae (Figures 1 and 2). SETAL NOTATION IS IN THE ORDER OF THE TRANSVERSE ROWS:
row 1: c1, c2, c3
row 2: d1, d2, d3
row 3: e1, e2
row 4: f1, f2
row 5: h1, h2, h3
row 6: ps1, ps2, ps3

(2) Higher cryptostigmatids with 14 or 15 pairs of setae (Figure 4). The homology of some of the setal rows is uncertain. The notation for rows 1, 5, and 6 is retained, but for the others letters indicating relative position are substituted (e.g., d, dorsal; l, lateral; a, anterior; m, median; p, posterior):

row 1: c1, c2, c3
anterior row: da, la
median row: dm, lm
posterior row: dp, lp
row 5: h1, h2, h3
row 6: ps1, ps2, ps3

(3) Higher cryptostigmatids with approximately 10 pairs of setae (Figure 6). The homology of the ps row is accepted, but other homologies are uncertain. Four setal groups are distinguished:

group t: ta, te, ti
group ms: ms
group r: r1, r2, r3
group p: p1, p2, p3

In many cryptostigmatids there are other notogastral insertions which are important taxonomic features. Thus, the areae porosae are thinner sections of the notogastral integument which appear to be punctate. Where they are present, the following notation is used:

areae porosae adalares: Aa
areae porosae mesonoticae 1: A1
 2: A2
 3: A3

The dorsosejugal suture has a further pair of these structures, the areae porosae dorsosejugalae (Ad). More rarely, there is a pair at the sides of the pro-dorsum (the areae porosae laterales: Al) and/or behind the anal plates (the areae porosae postanales: App).

The sacculi are small sacs below the cuticle with a minute opening to the surface. Their position and number correspond to those of the areae porosae, and their notation is Sa, S1, S2, S3. The pori are slit-like pores on the notogaster, their notation is prefixed by the letter 'i' (viz ia, ip, ips, ih, im, iad — Figures 1–3). The location of pori iad has taxonomic significance in some groups. If they are parallel with the edge of the anal plate they are said to be adanal in position, if obliquely inclined they are apoanal in position.

Sometimes the anterolateral edges of the notogaster are prolonged into a horizontal or ventrally curved integumental lamella known as a pteromorph. This may be hinged and moveable, or fixed (or only partly hinged) and immovable. In some species the anterior edge of the notogaster is also extended into a thin projection, like the eaves of a house, known as a tectum.

Chitinuous teeth, ridges, or lines are sometimes to be found anterodorsally on the notogaster. These are collectively known as cistae.

Ventral surface (Figures 3, 5, and 7)

Epimeral region. Anteriorly, the infracapitulum and the camerostome contain the mouthparts. Posterior to these are the coxae of the legs, with the genital plates further posteroomedially. The area delimited by the camerostome, the coxae, and the genital plates is known as the epimeral region, and is covered by 4 epimeral plates (= epimera): ep1, ep2, ep3, ep4. The epimeral plates are bordered by chitinuous thickenings, the apodemata, of which there are 5: apo1, apo2, apo3, apo4. Apodemata 3 and 4 are often absent as a consequence of the coalescing of ep3 and ep4. Setae arising from the epimera are identified by numbers indicating the precise epimere, and by letters indicating location on the epimere. The epimeral setal formula frequently has important taxonomic value.

Projecting laterally from between the legs are appendages called tectopedia. These are described and located as follows:

tutorium (tu): tectopodium 1, anterior to leg I
pedotectum 1: tectopodium 2, posterior to leg I
pedotectum 2: tectopodium 3, posterior to leg II
discidium (disc): tectopodium 4, posterior to leg III

Genitoanal region. Posterior to the epimeral region is the genitoanal region. The genital and anal openings are usually protected by plates bearing setae, and may be closely adjacent or widely separated. Aggenital (ag) and adanal (ad) setae are frequently present.

TECHNIQUES

Collection. Many cryptostigmatids may be collected directly by using a fine, moistened artist's brush or a 'pooter'. Those inhabiting bark or rock crevices are readily gathered by this method, as are many of the larger forms in leaf litter. The technique is not adequate for the smaller mites or for those living cryptically in soil, litter, moss, or lichen. These must first be expelled from their habitat by exploiting their aversion to low humidity. The sample is placed on a sieve in a funnel, and an
incandescent electric lamp is suspended above it as a source of heat. A collecting vessel containing, for instance, 50% ethyl alcohol is placed beneath the funnel opening to catch, kill, and temporarily preserve the animals as they emerge from their drying environment. Many modifications of this basic pattern of extractor have been devised, to allow for greater efficiency and/or for multiple sample extraction.

Preservation. Cryptostigmatids may be satisfactorily preserved in 70–80% ethanol. It is recommended that up to 5% of glycerol should be added as a safety measure so that the specimens do not dry out. Indeed, several workers have advocated the preservation of cryptostigmatids in pure glycerol or in ethylene glycol. Small glass vials with airtight caps are suitable for curation, and the smaller specimens may be contained in plugged Durham tubes inverted within the vials themselves. The most satisfactory plugs for the Durham tubes, where available, are small portions of botanical pith or dried bracket fungus (Polyporus) taken with a suitable cork borer.

Preparation for study. Cryptostigmatid mites are best studied in temporary preparations. The most suitable mounting and clearing medium is lactic acid used cold or warm and at 50–100% dilution, according to the degree of sclerotisation of the specimen. Individuals should ideally be transferred to a drop of lactic acid in a cavity slide, covered with a coverslip, and placed on a hotplate for gentle warming. Lactophenol is also a good clearing agent, especially for the more heavily sclerotised specimens.

Temporary preparations are not suitable for permanent storage. For this, several slide mounting media are available; the most widely used is de Faure’s medium:

- Distilled water 50 ml
- Chloral hydrate 50 g
- Glycerol 20 ml
- Gum arabic or acacia 30 g

This medium is water-soluble, and the slide mount may be recovered by soaking in water. For permanent storage the coverslip should be ringed with Glyceel or with nail varnish. Cobb slides, in which the specimen is sandwiched between two coverslips held in an aluminium frame, are the most suitable for permanent mounts because the specimens may be viewed from two sides.

USE OF THIS GUIDE

This review concerns adult cryptostigmatids only. Juvenile stages may readily be distinguished by the slit-like nature of their genital and anal openings, which have no true genital or anal plates. Furthermore, their cuticle is thin and unpigmented. Several of the primitive cryptostigmatids are also without pigment or anal or genital plates in the adult stage, but may be distinguished by their long, black setae, or by the presence of horizontal sutures on the notogaster.

Based as they are on adult stages, the keys are somewhat artificial, and are intended as an aid to identification rather than as an opinion on phylogeny. They represent a first attempt to bring order to the voluminous and scattered literature on the subject, and to stimulate further work on taxonomy and ecology of the New Zealand species. In the present fluid state of mite systematics it is inevitable that modifications will be made in the future. In particular, familial diagnoses are in need of revision (Johnston 1982), and this must be done on the basis of the world fauna. I have excluded diagnoses of nominal families for this very reason. Families, genera, and species should be readily identifiable by means of the keys provided, and for ease of rapid checking concise diagnoses of genera are given in the section ‘Diagnoses, keys to species, and collection records’. Full diagnoses of species are not included in this review; the original literature must be consulted.

Collecting locations are recorded in the manner of Crosby *et al.* (1976).
KEYS TO THE CRYPTOSTIGMATA
KNOWN FROM NEW ZEALAND

I. COHORTS*

01 Notogaster with 1–3 transverse sutures
 — Notogaster without transverse sutures
 ... (p. 26) ... Enarthronota
02(01) Propodosoma able to close on hysterosoma like a penknife blade; body generally compressed laterally
 — Not as above ... (p. 25) ... Euptyctima
03(02) Legs with 2 femora; notogaster not pigmented
 — Legs with 1 femur; notogaster generally pigmented
 ... (p. 25) ... Palaeosomata
04(03) Tibiae and genua of about uniform length and shape
 — Genua reduced ... (p. 33) ... Circumdehiscentiae

II. SUPERFAMILIES, FAMILIES, AND GENERA†

A. PALAEOSOMATA
 Represented by superfamily Palaeacaroidea:
01 No notogastral setae conspicuously more robust than others; prodorsal shield present ... (p. 25; Fig. 10) ... Adelphacaridae, Aphelacarus
 — Some notogastral setae conspicuously more robust than others; prodorsal shield absent ... Acaronychidae ... 2
02(01) 'False lamella' absent from prodorsum; setae d2 on separate paired sclerites
 ... (p. 25; Fig. 11) ... Acaronychus
 — 'False lamella' present on prodorsum; setae c1 and c2 on a single median sclerite ... (p. 25; Fig. 12) ... Stomatocerus

B. EUPYTCTIMA
01 Genital and anal plates wide; body not conspicuously compressed laterally ... Phthiracaroidea, Phthiracaridae
 — Genital and anal plates narrow; body considerably compressed laterally ... Euphtiracaroidea ... 2
02(01) Anal plates with 7 pairs of setae
 ... (p. 26; Fig. 13) ... Protophthiracus
 — Anal plates with 5 pairs of setae ... 3
03(02) Three of the 5 pairs of setae on inner margins of anal plates
 ... (p. 26; Fig. 14) ... Hoplophorella
 — Two pairs of setae on inner margins of anal plates ... 4
04(03) Interlamellar setae either minute or decumbent
 ... (p. 26; Fig. 15) ... Phthiracus
 — Interlamellar setae erect ... (p. 26; Fig. 16) ... Notophthiracus
05(01) Anal and genital plates fused with ventral plate
 ... (p. 25; Fig. 17) ... Euphtiracaridae, Microtritia
 — Anal and genital plates not fused with ventral plate ... Oribotritiidae ... 6
06(05) Genital and ventral plates partly fused anteriorly
 ... (p. 25; Fig. 18) ... Indotritia
 — Genitoventral suture complete ... (p. 25; Fig. 19) ... Mesotritia

C. ENARTHRONOTA
01 Notogaster with 3 sutures ... (p. 27; Fig. 20) ... Cosmochthonioidea, Cosmochthonius
 — Notogaster with 2 sutures ... Brachychthonioidea, Brachychthoniidae ... 2
 — Notogaster with 1 suture ... Hypochthonioidea ... 3
02(01) Setae d3 distant from notogastral margin; seta p2 always lateral to p1; posterior part of hysterosoma without tubercles
 ... (p. 27; Fig. 21) ... Liochthonius
 — Setae d3 situated at notogastral margin; seta p2 beneath p1; posterior part of hysterosoma with 2 tubercles ... (p. 26; Fig. 22) ... Brachychthonius

*The page numbers cited are for pick-up in the section 'Diagnoses, keys to species, and collection records', which follows the keys. The five cohorts are each keyed out to genus level below (IIA–E).
†New families and genera mentioned in these keys are indicated by a superscript dagger. They are formally proposed in the section 'Diagnoses, keys to species, and collection records', at the page indicated.
03(01) An indistinct, medially interrupted groove between true suture and prodorsum ... (p. 27; Fig. 23) ... Enochthoniidae, Hypochthoniella
— No such groove present ... (p. 27; Fig. 24) ... Hypochthoniidae, Hypochthonius

D. NOTHRONATA
01 Genital and anal plates separate; a semicircular, medially interrupted suture between genital and anal plates (diagastry) ... (p. 28; Fig. 25) ... Nanhermannoidea, Nanhermannia
— Genital and anal plates meeting or nearly meeting each other; diagastry absent ... 2

02(01) Genital and anal plates on separate ventral plate; hysterosoma rounded ... (p. 28; Fig. 26) ... Hermannioidea, Phyllhermannia
— Genital and anal plates occupying entire ventral side posterior to epimera; hysterosoma quadrangular or oval ... Nothiroidea ... 3

03(02) Aggenital setae numbering 2 pairs ... 4
— Aggenital setae absent ... 5

04(03) Sensilli totally immersed in bothridia ... Crotoniidae ... 7
— Sensilli not completely enclosed by bothridia ... Camisiidae ... 9

05(03) Epimera neotrichous; only some of genital setae at inner margin of genital plate ... Notriidae ... 11
— Epimera without neotrichy; genital setae conspicuously marginal ... 6

06(05) Bothridia present ... Trhypochthoniidae ... 12
— Bothridia absent ... Malacothroidae ... 13

07(04) Anal setae numbering 3 pairs; setae c2 absent ... (p. 29; Fig. 27) ... Crotonia
— Anal setae numbering 2 pairs; setae c2 present ... 8

08(07) Epimera 3 and 4 divided by a longitudinal split ... (p. 29; Fig. 28) ... Austronothrus
— Epimera 3 and 4 not divided longitudinally ... (p. 30; Fig. 29) ... Holonothrus

09(04) Anal setae numbering 3 pairs ... (p. 28; Fig. 30) ... Camisia
— Anal setae numbering 2 pairs ... 10

10(09) Posterior marginal setae of notogaster arising from apophyses ... (p. 28; Fig. 31) ... Henniothrus
— Posterior marginal setae not arising from apophyses ... (p. 29; Fig. 32) ... Platynothrus

11(05) Sensilli flagelliform; epimere 1 with 9 setae ... (p. 32; Fig. 33) ... Novonothrus
— Sensilli filiform, setiform, or fusiform; epimere 1 with 5–7 setae ... (p. 32; Fig. 34) ... Nothrus

12(06) Anal setae numbering 1 pair ... (p. 33; Fig. 35) ... Trhypochthonius
— Anal setae numbering 2 pairs ... (p. 33; Fig. 36) ... Allonothrus

13(06) Monodactylous ... 14
— Tridactylous ... 15

14(13) Genital setae numbering 4–6 pairs; fewer than 2 pairs of anal setae ... (p. 31; Fig. 37) ... Malaconthrus
— Genital setae numbering 18–20 pairs; anal setae 2 pairs ... (p. 33; Fig. 38) ... Mucronothrus

15(13) Notogastral setae numbering 13 pairs ... (p. 31; Fig. 1–3) ... Trimalaconthrus
— Notogastral setae numbering 14 pairs ... 16

16(15) Genital setae numbering 5 or 6 pairs ... (p. 32; Fig. 39) ... Zeanothrus
— Genital setae numbering 8 pairs ... (p. 31; Fig. 40) ... Fossonothrus

E. CIRCUMDEHISCENTIAE
This major cohort may readily be divided into two groups, as follows. Even these divisions are, however, so large as to require separate keys for the taxa at two hierarchical levels:

01 Notogaster without pteromorphae, areae porosae, or sacculi ... Pycnonoticae
— Notogaster with pteromorphae, and/or areae porosae, and/or sacculi ... Poronoticae

Sig. 2
SUPERFAMILIES OF PYCNONOTICAE
(key to families and genera, p. 19)

01 Prodorsum with true lamellae (lath-shaped, usually bearing lamellar seta on cuspis) ... 2
 — Prodorsum without true lamellae (sometimes narrow costulae present, without a prominent cuspis) ... 5

02(01) Notogaster smooth, rarely with fine reticulation, granulation, or foveolation, often dark but not thickened; tridactylous ... LIACAROIDEA
 — Notogaster with cerotegument and/or adherent debris, or with rough sculpturing (wrinkles, tubercles, reticulation); monodactylous or tridactylous ... 3

03(02) Notogaster below cerotegument and adhering debris smooth or punctate ... POLYPTEROZETOIDEA
 — Cerotegument and debris often slight or absent; notogaster with rough sculpturing (wrinkles, tubercles, reticulation) ... 4

04(03) Lamellae more or less convergent; notogaster circular, not longer than wide ... CEPHEOIDEA
 — Lamellae more or less parallel or hardly convergent; notogaster longer than wide ... CARABODOIDEA

05(01) Hysterosoma with a lateral tube ... HERMANNIELLOIDEA
 — Hysterosoma without a lateral tube ... 6

06(05) Genital setae numbering 3 pairs ... OTOCNFROIDEA
 — Genital setae exceeding 3 pairs ... 7

07(06) Legs long, with swollen, spherical joints; hysterosoma spherical, with notogastral setae in 2 longitudinal rows ... BELYIDESIA
 — Not as above ... 8

08(07) Genital plates with a transverse suture ... LIOOIDEA
 — Genital plates without a transverse suture ... 9

09(08) Sensilli reduced or absent ... 10
 — Sensilli normal ... 11

10(09) Notogastral setae numbering 16 pairs or more; monodactylous ... HYDROZETOIDEA
 — Notogastral setae numbering 15 pairs or fewer; usually tridactylous (Fortuy-nia is monodactyl) ... AMERONOTHTROIDEA
 11(09) Genital and anal plates relatively large, meeting or nearly meeting each other ... GYMNODAMAEOIDEA
 — Genital and anal plates widely separated ... 12

12(11) Ventral plate with 4 pairs of setae (1 pair aggenital, 3 pairs adanal); if more than 1 pair of aggenitals, then with only 4 pairs of genital setae (Tripiloppia) ... OPPIOIDEA
 — Ventral plate with more than 4 pairs of setae ... EREMULOIDEA

SUPERFAMILIES OF PORONOTICAE
(key to families and genera, p. 22)

01 Pteromorphae auriculate, extending both anteriorly and posteriorly ... GALLUMNOIDEA
 — Pteromorphae not auriculate, or absent ... 2

02(01) Chelicerae thick basally, becoming attenuate apically, and bearing a small chela (peloptoid); interlamellar setae usually very large, leaf-shaped; body frequently covered with a thick cerotegument and with some fusiform dorsal setae ... PELOPOIDEA
 — Not as above ... 3

03(02) Minute species (less than 250 µm), with large lamellae; chelicerae with bacilliform appendages laterally ... MICROZETOIDEA
 — Larger than 250 µm; no bacilliform appendages on chelicerae ... 4

04(03) Lamellae present or absent; if present, then notogaster with rough sculpturing (wrinkles, tubercles, reticulation) ... PASSALOZETOIDEA
 — Lamellae present; integument without rough sculpture ... 5

05(04) Lamellae extremely wide, meeting or fusing mediadly and covering major portion of prodorsum ... ORIBATULOIDEA
 — Lamellae either marginal strips or, if wider, not meeting mediadly but connected by a translamella ... 6

06(05) Lamellae narrowing anteriorly, almost always without a translamella or cuspis; pteromorphae horizontal, hardly protruding from outline of hysterosoma, or absent ... ORIBATULOIDEA

-18-
— Lamellae usually not conspicuously narrowing anteriorly; cuspis almost always present, and translamella frequently so; pteromorphae well developed, directed downwards...

CERATOZETOIDEA

FAMILIES AND GENERA OF PYCNONOTICAE
(in alphabetical sequence of superfamilies)

AMERONOTHROIDEA

01 Monodactylous; with a complex system of tubes and canals (van der Hammen's organ) between bothridium and coxae...

FORTUYNIIDAE, Fortynia
— Tridactylous; van der Hammen's organ absent...

02(01) Notogastral sculpturing a robust reticulation; sensilli with short stalks terminating in large globose...

CYMBAEREMAEIDAE...
— Notogaster smooth or punctate; sensilli various, but stalk clearly emerging from bothridium...

PODACARIDAE...

03(02) Interlamellar setae absent; notogastral setae somewhat thickened...

Scapheremaeus
— Interlamellar setae present; notogastral setae small and thin...

04(03) Notogastral setae numbering 15 pairs; genital setae numbering 5 pairs; dorsosejugal suture interrupted medially; no aggenital setae...

Capillibates
— Notogastral setae numbering 12 pairs; genital setae numbering 6 pairs; dorsosejugal suture not interrupted medially; aggenital setae numbering 1 pair...

05(02) Dorsosejugal suture evenly curved anteriorly...

Alaskozetes
— Dorsosejugal suture angulate anteriorly, or inconspicuous...

06(05) Interlamellar setae minute or absent...

Podacarnus
— Interlamellar setae long...

Belboidea
Represented by the belbid genus Metabelba (p. 35; Fig. 48)

CARABODOIDEA

01 Genital setae numbering 4 pairs; lamellae not extending beyond rostrum; no translamella...

Carabodidae...
— Genital setae numbering 6 pairs; lamellae extending beyond rostrum; translamella complete or incomplete...

Tectocephalidae, Tectocephus

02(01) Notogastral setae numbering 10 pairs...

Carabodes
— Notogastral setae numbering 14 pairs...

Austrocarabodes

CEPHEOIDEA
Represented by the tikizetid genus Tikizetes (p. 37; Fig. 52)

EREMULOIDEA

01 Dorsosejugal suture straight; sensilli flagelliform...

Eremulidae, Eremulus
— Dorsosejugal suture curved; sensilli swollen apically...

Damaelidae, Fosseremus

GYMNODAMAEIOIDEA
Represented by family PLATEREMAEIDAE:

01 Lamellar setae originating marginally; notogaster foveolate...

Pedrocortesia
— Lamellar setae originating dorsally; notogaster reticulate...

Pedrocortesella

HERMANNIELLOIDEA
Represented by the hermanniellid genus Hermanniella (p. 38; Fig. 57)

HYDROZETOIDEA
Represented by the hydrozetid genus Hydrozetes (p. 39; Fig. 58)

LIACAROIDEA

01 Monodactylous; adanal setae numbering 2 pairs...

Astegetidae, Cultroribula
— Tridactylous; adanal setae numbering 3 pairs...

02(01) Notogastral setae absent; genital and anal plates touching...

Maorizetes
— Notogastral setae present; genital and anal plates separate...

-19-
03(02) Notogastral setae numbering 12 pairs
 ... (p. 39; Fig. 61) ... ADHAESOZETIDAE, Adhaesozetes
 — Notogastral setae numbering 10 pairs or fewer ... METRIOPPIIDAE ... 4

04(03) Translamella absent
 ... (p. 39; Fig. 62) ... Pseudoceratoppia
 — Translamella present ... (p. 39; Fig. 63) ... Macquarioppia

LIODOIDEA
Represented by the liodid genus Lioes (p. 40; Fig. 64)

OPPIOIDEA

01 Chelicerae needle-like
 ... SUCTOBELBIDAE ... 4
 — Chelicerae robustly chelate ... 2

02(01) Tridactylous; prodorsum bearing large, paired spines ... (p. 52; Fig. 65) ... TUPAREZETIDAE, Tuparezetes
 — Monodactylous; prodorsum without large, paired spines ... 3

03(02) Costulae long; cristae well developed
 ... (p. 40; Fig. 66) ... AUTOGNETIDAE, Austrogneta
 — Costulae and cristae various, but rarely well developed together; if well developed together, then either the costulae (Quadroppia) or the cristae (Belloppia) connected anteriorly by a chitinous bridge ... OPPIDAE ... 6

04(01) Dorsosejugal suture with an unpaired tubercle medially
 ... (p. 51; Fig. 67) ... Suctobelbila
 — Dorsosejugal suture with no medial tubercles, or with more than one ... 5

05(04) Distal joints of pedipalps drawn out into bifurcate threads; at most 1 pair of rostral teeth
 ... (p. 51; Fig. 68) ... Zeasuctobelba
 — Distal joints of pedipalps without bifurcate threads; more than 1 pair of rostral teeth
 ... (p. 51; Fig. 69) ... Suctobelba

06(03) Genital setae numbering 4 pairs ... 7
 — Genital setae numbering 5 pairs ... 16
 — Genital setae numbering 6 pairs ... 28

07(06) Prodorsum with costulae ... 8
 — Prodorsum without costulae ... 15

08(07) Setae ta present ... 9
 — Setae ta absent ... 13

09(08) Rostrum tripartite; aggenital setae numbering 3 pairs
 ... (p. 50; Fig. 70) ... Tripiloppia
 — Rostrum entire; aggenital setae numbering 1 pair ... 10

10(09) Sensilli bacilliform or setiform; all femora with broad laminae
 ... (p. 43; Fig. 71) ... Laminoppia
 — Sensilli lanceolate or fusiform; femora without laminae ... 11

11(10) Sensilli lanceolate; femora with a process bearing a solenidion
 ... (p. 49; Fig. 72) ... Processoppia
 — Sensilli fusiform; femora without a process ... 12

12(11) Sensilli ciliate; pori iad oblique, in apoanal position
 ... (p. 50; Fig. 73) ... Solenoppia
 — Sensilli smooth, membranous; pori iad anterolaterally near anal field
 ... (p. 42; Fig. 74) ... Campbelloppia†

13(08) Bothridia closed with opercula
 ... (p. 40; Fig. 75) ... Acutoppia
 — Bothridia without opercula ... 14

14(13) Sensilli setiform, smooth
 ... (p. 49; Fig. 76) ... Rhaphoppia
 — Sensilli fusiform, unilaterally ciliate
 ... (p. 43; Fig. 77) ... Gressittoppia

15(07) Tibiae I each with a long process bearing a solenidion; bothridia without opercula
 ... (p. 48; Fig. 78) ... Paroppia
 — Tibiae I without long processes; bothridia with opercula
 ... (p. 47; Fig. 79) ... Operculoppia

16(06) Pori iad oblique, in apoanal position
 ... (p. 48; Fig. 78) ... Paroppia
 — Pori iad parallel with edge of anal plates, in adanal position ... 20

17(16) Notogaster with 12–13 pairs of setae
 ... (p. 48; Fig. 80) ... Polyoppia
 — Notogaster with fewer than 12 pairs of setae ... 18

18(17) Prodorsum elongate, with very short setae; epimera 3 and 4 extremely elongate
 ... (p. 50; Fig. 81) ... Trizetes
 — Not as above ... 19
19(18) Sensilli fusiform, ciliate
 ... (p. 48; Fig. 82) . . Oxyoppia
 — Sensilli pectinate or radiate
 ... (p. 42; Fig. 83) . . Brachioppiella

20(16) Epimeral setae extremely long,
directed inwards
 ... (p. 46; Fig. 84) . . Machuella

21(20) Cristae strongly developed, extending
posteriorly for one-third to two-thirds
of notogastral length
 ... (p. 49; Fig. 85) . . Quadroppia
 — Cristae weakly developed, or absent . . 22

22(21) Interlamellar setae and setae ta much
longer than other setae; lamellar setae
absent
 ... (p. 47; Fig. 86) . . Miroppia
 — Interlamellar setae and setae ta sub-equal
to other dorsal setae or only slightly longer; lamellar setae present . . 23

23(22) Rostral setae geniculate
 ... (p. 49; Fig. 87) . . Ramusella
 — Rostral setae not geniculate . . 24

24(23) Sensilli setiform, long, with long cilia
 ... (p. 49; Fig. 88) . . Piloppiella
 — Sensilli bacilliform, fusiform, or
capitate . . 25

25(24) Prodorsum with costulae . . 26
 — Prodorsum without costulae . . 27

26(25) Sensilli capitate, smooth; dorsosejugal
suture with a strongly developed,
anteriorly projecting medial ridge
 ... (p. 42; Fig. 89) . . Belloppia
 — Sensilli otherwise; dorsosejugal suture
without anteriorly projecting medial
ridge
 ... (p. 48; Fig. 90) . . Oppiella

27(25) Setae ta absent; sensilli pectinate, or
fusiform and unilaterally ciliate
 ... (p. 43; Fig. 91) . . Insculptoppia
 — Setae ta present; sensilli short,
capitate
 ... (p. 47; Fig. 92) . . Microppia

28(06) Pori iad parallel with lateral edge of
anal plates, in adanal position . . 29
 — Pori iad oblique, in apoanal position . . 31

29(28) Interlamellar setae absent
 ... (p. 41; Fig. 93) . . Amerioppia
 — Interlamellar setae present, or repre-
sented by alveoli . . 30

30(29) Sensilli fusiform, unilaterally ciliate
 ... (p. 48; Fig. 94) . . Pletzenoppia
 — Sensilli radiate, with 2 or 3 distal
branches
 ... (p. 41; Fig. 95) . . Arcoppia

31(28) Sensilli ciliate
 — Sensilli not ciliate, at most aciculate . . 32

32(31) Sensilli unilaterally ciliate
 ... (p. 41; Fig. 96) . . Austroppia
 — Sensilli bilaterally ciliate
 ... (p. 49; Fig. 97) . . Setuloppia

33(31) Sensilli capitate
 — Sensilli otherwise . . 34

34(33) Bothridia covered with a narrow rib-
on of membrane
 ... (p. 47; Fig. 98) . . Membranoppia
 — Bothridia without narrow ribbon of
membrane . . 35

35(34) Costulae and transcostula absent or
reduced
 ... (p. 43; Fig. 99) . . Globoppia
 — Costulae and transcostula distinct . . 36

36(35) Transcostula discontinuous; inter-
lamellar region with transverse ridges
 ... (p. 48; Fig. 100) . . Pravoppia†
 — Not as above
 ... (p. 47; Fig. 101) . . Nesoppia†

37(33) Costulae and transcostula both con-
spicuous together
 ... (p. 41; Fig. 102) . . Baioppia†
 — Costulae and transcostula not con-
spicuous together . . 38

38(37) Rostrum with 2 membranous lobes at
tip
 ... (p. 46; Fig. 103) . . Loboppia
 — Rostrum without membranous lobes
at tip . . 39

39(38) Costulae conspicuous, straight, con-
verging, and with lamellar setae at
tips
 ... (p. 42; Fig. 104) . . Convergoppia
 — Costulae not converging, or absent . . 40

40(39) Small, chitinous hook behind proxim-
ial part of femora II
 ... (p. 43; Fig. 105) . . Hamoppia
 — No hook behind proximal part of
femora II
 ... (p. 44; Fig. 106) . . Lanceoppia

OTOCEPHEOIDEA
Represented by family OTOCEPHIDAE:
Notogastral setae numbering 10 pairs

— Notogastral setae numbering more than 10 pairs

02(01) Notogastral setae clavate

... (p. 52; Fig. 107) ... Clavazonetes

— Notogastral setae simple

... (p. 53; Fig. 108) ... Pseudotocepheus

03(01) Notogastral setae numbering 14 pairs

... (p. 52; Fig. 109) ... Plenotocepheus

— Notogastral setae numbering 12 pairs

... (p. 52; Fig. 110) ... Neotocepheus

POLYPTEROZETOIDEA

01 Sensilli with terminal villi more or less well developed; longitudinal ridges or lines at dorsosejugal region; adanal setae numbering 2 pairs

... Tumerozetidae ... 2

— Sensilli various; no longitudinal ridges or lines at dorsosejugal region; adanal setae numbering 3 pairs

... Eutegaeidae ... 3

02(01) Genital setae numbering 6 pairs; notogastral setae numbering 10 pairs

... (p. 55; Fig. 111) ... Tumerozetes

— Genital setae numbering 4 pairs; notogastral setae usually absent, but anyway fewer than 10 pairs

... (p. 55; Fig. 112) ... Topalia

03(01) Genital setae numbering 4 pairs

... (p. 55; Fig. 113) ... Nodocepheus

— Genital setae numbering 5 or 6 pairs

... 4

04(03) Humeral processes long, pointed, directed forwards in parallel with lamellae ... 5

— Humeral processes short, blunt ... 7

05(04) Rostral and interlamellar setae absent

... (p. 55; Fig. 114) ... Pterozetes

— Rostral and interlamellar setae present ... 6

06(05) Lamellar cusps with 2 teeth

... (p. 54; Fig. 115) ... Eutegaeus

— Lamellar cusps with at most a single, long, incurved tooth

... (p. 54; Fig. 116) ... Nesutegaeus

07(04) Notogastral and interlamellar setae robust; chelicerae needle-like

... (p. 53; Fig. 117) ... Bornebuschia

— Notogastral and interlamellar setae short; chelicerae robustly chelate

... (p. 53; Fig. 118) ... Compactozetes

N.B. Pareutegaeus was erroneously included in the New Zealand fauna by Spain & Luxton (1971).

FAMILIES AND GENERA OF PORONOTICAE

(in alphabetical sequence of superfamilies)

CERATOZETOIDEA

01 Pteromorphae completely or partially hinged; always with a translamella ... 2

— Pteromorphae not hinged; with or without a translamella ... 3

02(01) Notogaster without areae porosae or sacculi

... (p. 60; Fig. 119) ... Ramsayellidae†, Ramsayellus

— Notogaster with areae porosae

... Mycobatidae ... 6

03(01) Translamella absent ... (p. 58; Fig. 120) ... Chamobatidae, Pedunculozetes

— Translamella developed to a greater or lesser degree ... 4

04(03) Lamellae large and covering much of prodorsum; teeth of cusps more or less well developed ... (p. 56; Fig. 121) ... Austrachipteridae†, Austrachipteria

— Not as above ... 5

05(04) Translamella represented by a chitinous scale; heterodactylous

... (p. 60; Fig. 122) ... Onychobatidae†, Onychobates

— Translamella partial or complete; tridactylous or monodactylous

... Ceratozetidae ... 11

06(02) Monodactylous ... 7

— Tridactylous ... 8

07(06) Notogastral setae numbering 9 pairs; genital setae numbering 5 pairs

... (p. 59; Fig. 123) ... Mycozetes

— Notogastral setae numbering 10 pairs; genital setae numbering 3 pairs

... (p. 59; Fig. 124) ... Cryptobothria

08(06) Notogaster with a well developed tectum on anterior border ... 9

— Notogaster without tectum ... 10

09(08) Tectum strongly projecting anteriorly; pteromorphae not striate, completely hinged ... (p. 60; Fig. 8, 9, and 125) ... Punctoribates
— Tectum not projecting anteriorly; pteromorphae striate, incompletely hinged
 ... (p. 59; Fig. 126) ... Neomycobates

10(08) Translamella only intermittently present
 ... (p. 59; Fig. 127) ... Balogkhobates
— Translamella continuous
 ... (p. 59; Fig. 128) ... Antarctozetes

11(05) Genital setae numbering 5 pairs
 ... (p. 57; Fig. 129) ... Macrogena
— Genital setae numbering 6 pairs ... 12

12(11) Tutoria extremely broad, covering sides of propodosoma
 ... (p. 58; Fig. 130) ... Tutorozetes
— Tutoria not as above ... 13

13(12) Rostrum tripartite
 ... (p. 58; Fig. 131) ... Magellozetes
— Rostrum rounded or truncate ... 14

14(13) Translamella a faint line; cuspis not prominent
 ... (p. 57; Fig. 132) ... Edwardzetes
— Translamella, or translamellar remnant, well defined; cuspis prominent ... 15

15(14) Sejugal apodemes forming a transverse ridge; no dark, curved ridge anterior to genital region
 ... (p. 57; Fig. 133) ... Ceratozetes
— Sejugal apodemes not forming a transverse ridge; a dark, curved ridge anterior to genital region
 ... (p. 58; Fig. 134) ... Parafurcobates

GALUMNOIDEA

01 Prodorsum with true, projecting lamellae ... Parakalummididae ... 2
— Prodorsum lacking true, projecting lamellae, at most with chitinous lines on surface of prodorsum
 ... Galuminidae ... 3

02(01) Notogaster with 4 pairs of well developed areae porosae
 ... (p. 62; Fig. 135) ... Porokalumma
— Notogaster with 4 pairs of sauculi
 ... (p. 61; Fig. 136) ... Neoribates

03(01) Prodorsum with 2 pairs of chitinous lines on surface
— Prodorsum with 1 pair of chitinous lines on surface ... 4

04(03) One lamellar seta situated between each pair of chitinous lines
 ... (p. 61; Fig. 137) ... Galumna
— Lamellar setae not situated between chitinous lines, but more medially on prodorsum
 ... (p. 61; Fig. 138) ... Pergalumna

05(03) Notogaster with 1 median pore
 ... (p. 61; Fig. 139) ... Allogalumna
— Notogaster without a median pore (females) or with several in a group (males)
 ... (p. 60; Fig. 140) ... Acrogalumna

MICROZETOIDEA
Represented by the microzetid genus Cuspitegula (p. 62; Fig. 141)

ORIBATELLOIDEA

01 Lamellae entirely fused in middle, forming a single large scale almost wholly covering prodorsum
 ... (p. 62; Fig. 142) ... Tegoribatidae, Paraphysobates†
— Lamellae meeting only in median line, or fusing only basally ... (p. 62; Fig. 143) ... Oribatellidae, Lamellobates

ORIBATULOIDEA

01 Pteromorphae curving ventrally to a greater or lesser extent
 ... Haplozetidae ... 4
— Pteromorphae represented by horizontal projections, or absent ... 2

02(01) Notogaster with sauculi ... Scheloribatidae ... 11
— Notogaster with areae porosae ... 3

03(02) Notogastral setae numbering more than 30 pairs ... (p. 64; Fig. 144) ... Neotrichozetidae, Neotrichozetes
— Notogastral setae numbering fewer than 15 pairs ... Oribatulidae ... 16

04(01) Genital setae numbering 3 pairs ... 5
— Genital setae numbering 4-6 pairs ... 6

05(04) All setae minute
 ... (p. 62; Fig. 145) ... Angullozetes
— All setae conspicuous
 ... (p. 63; Fig. 146) ... Totobates

06(04) Notogaster with 14 pairs of setae ... 7
— Notogaster with fewer than 14 pairs of setae ... 8
07(06) Genital setae numbering 5 pairs; tridactylous
 — Genital setae numbering 6 pairs; monodactylous
 ... (p. 63; Fig. 148) ... *Pelobates*

08(06) Notogaster with sacculi ... 9
 — Notogaster with areae porosae ... 10

09(08) Setae of prodorsum and notogaster frequently accompanied by a pore
 — Setae of prodorsum and notogaster lacking adjacent pore
 ... (p. 63; Fig. 150) ... *Magnobates*

10(08) Tridactylous; femora I and II and tarsi I–III bearing broad, branched setae
 — Monodactylous; without broad, branched setae on legs
 ... (p. 63; Fig. 151) ... *Sicyxylates†*

11(02) Monodactylous; aggenital setae absent ... 12
 — Tridactylous; aggenital setae numbering 1 pair ... 13

12(11) Notogastral setae numbering 10 pairs; genital setae numbering 4 pairs; anal setae numbering 1 pair
 — Notogastral setae numbering 9 pairs; genital setae numbering 3 pairs; anal setae numbering 2 pairs
 ... (p. 66; Fig. 154) ... *Zeascheloribates*

13(11) Notogastral setae numbering 13 pairs
 ... (p. 68; Fig. 4 and 5) ... *Setobates*
 — Notogastral setae numbering 10 pairs ... 14

14(13) Pteromorphae long and narrow, extending posteriorly at least to level of setae ms
 — Pteromorphae triangular, not extending to setae ms, at most to level of pore im ... 15

15(14) Hysterosoma narrow, elongate; sensilli with heads disc-shaped
 — Hysterosoma broadly oval; sensilli fusiform or lanceolate
 ... (p. 67; Fig. 157) ... *Scheloribates*

16(03) Genital setae numbering 2 pairs
 — Genital setae numbering 3 pairs ... (p. 65; Fig. 158) ... *Ingella*
 — Genital setae numbering 4 pairs ... 17
 — Genital setae numbering 6 pairs ... 18

17(16) Monodactylous; notogastral setae numbering 10 pairs; translamella absent ... (p. 65; Fig. 159) ... *Liebstadia*
 — Tridactylous; notogastral setae numbering 13 pairs; translamella present ... (p. 66; Fig. 160) ... *Zygoribatula*

18(16) Notogaster with a single conical projection posteriorly
 — Notogaster without a conical projection posteriorly ... (p. 65; Fig. 162) ... *Crassoribatula*

PASSALOZETOIDEA
01 Genital setae numbering 6 pairs; lamellae with translamella ... (p. 69; Fig. 163) ... *Scutoverticidae, Scutovertex*
 — Genital setae numbering 3 or 4 pairs; lamellae absent ... *Passalozetidae ... 2*

02(01) Genital setae numbering 3 pairs; costulae on prodorsum
 — Genital setae numbering 4 pairs; no costulae on prodorsum ... (p. 68; Fig. 164) ... *Paraphauloppia*
 — Genital setae numbering 4 pairs; no costulae on prodorsum ... (p. 68; Fig. 165) ... *Subphauloppia*

PELOPOIDEA
Represented by the pelopid genus *Nesopelops* (p. 69; Fig. 166)
DIAGNOSES, KEYS TO SPECIES, AND COLLECTION RECORDS

Cohort PALAEOSOMATA
Superfamily PALAEACAROIDEA
Family ACARONYCHIDAE

Genus Acaronychus Grandjean, 1932: 421
Type-species Acaronychus traegardhi Grandjean, 1932.
Acaronychid mites lacking a prodorsal shield; setae c2 on separate paired sclerites.
Recorded as genus only (Figure 11) from pasture on Taita hill soil, DSIR Soil Bureau Experimental Station, Lower Hutt (McMillan 1969).

Genus Stomacarus Grandjean, 1952: 360
Type-species Stomacarus tristani Grandjean, 1952.
Acaronychid mites with a conspicuous prodorsal shield bearing at least 1 seta; setae c1 and c2 on a single notogastral shield.

01 Sensilli expanded distally into fusiform heads
 — Sensilli without expanded fusiform heads
 ...

02(01) Rostral setae longer than interlamellar setae; setae e1 much longer than e2...
 ... w Watsoni
 — Rostral and interlamellar setae approximately equal in length; setae e1 and e2 approximately equal in length...
 ... campbellensis

03(01) Rostral setae not barbed; interlamellar setae halfway up ‘false lamella’...
 ... (Fig. 12)...
 ... ligamentifera
 — Rostral setae barbed; interlamellar setae at base of ‘false lamella’...
 ... ciliarius

 — / — / Campbell I.

 WO / —.

S. ligamentifera (Hammer, 1967) (Figure 12) — rather dry mosses under manuka, Waitakere Range; low plants under manuka in thermal area, Rototui; thick moss and bony dry lichens and Lycopodium in open manuka / Nothofagus forest, Lake Rotomai; mosses and liverworts on dead branches and in dead leaves, Fox Glacier and Milford Sound; also at Waitomo and Lake Matheson (Hammer 1967).
 AK, WO, BP / BR, WD, FD.

 — / — / Macquarie I.

REMARKS. I have accepted Lee’s (1981) proposed synonymy of Andacarus with Stomacarus.

Family ADELPHACARIDAE

Genus Aphelacarus Grandjean, 1932: 412
Type-species Parhypochthonius acarius Berlese, 1910.
Adelphacarid mites with short, arcuate, fusiform sensilli considerably shorter than prodorsum.
Recorded as (queried) genus only (Figure 10) from pastures on Taita hill soil and in Pomare silt loam, DSIR Soil Bureau Experimental Station, Lower Hutt (McMillan 1969).

WN / —.

Cohort EUPTYCTIMA
Superfamily EUPHTHIRACAROIDEA
Family EUPHTHIRACARIDAE

Genus Microtritia Märkel, 1964: 45
Type-species Phthiracarus minimus Berlese, 1904.
Euphthiracarid mites with both genital and anal plates fused with ventral plate; a single interlocking triangle between genital and anal plates; genital setae numbering 4 or 5 pairs; notogaster with 14 pairs of setae; trochanters III and IV each with 1 seta; monodactylous.
Recorded as genus only (Figure 17) from pasture on Akatarawa hill soil, Hutt Valley (Adams 1971).

WN / —.

Family ORIBOTRITIIDAE

Genus Indotritia Jacot, 1929: 213
Type-species Tritia krakatauensis Sellnick, 1923.
Oribotritiid mites with anal plates separated from ventral plate by a suture; genital plates partly fused with ventral plates anteriorly; notogaster with 14 pairs of setae; tridactylous.
I. aotearoana Ramsay, 1966 (Figure 18) — litter of halophytic scrub and mat plants, Little Brother Island, Cook Strait (Ramsay 1966b).
 / SD.

Genus Mesotritia Forsslund, 1963: 284
Type-species Mesotritia testacea Forsslund, 1963.
Oribotritiid mites with both anal and genital plates separated from ventral plate by suture; notogaster
with 14 pairs of setae; genital setae numbering 6 pairs; genua IV lacking solenidia; tridactylous.

Recorded as genus only (Figure 19) from pastures on Taita hill soil and Pomare silt loam, DSIR Soil Bureau Experimental Station, Lower Hutt (McMillan 1969).

WN / —.

Genus \textit{Hoplophorella} Berlese, 1923: 260
Type-species \textit{Hoplophora cucullatum} Ewing, 1909.

Phthiracarid mites with 5 pairs of setae on anal plates; anal setae (3 pairs) closely adjacent to each other on inner margins.

Recorded as genus only (Figure 14) from pohutukawa leaf litter near landing, \textit{Histiopteris} leaf litter, rotten pohutukawa log, and wet pohutukawa leaf litter at top of forest, Ohauora, White Island (Wise 1970).

BP / —.

Genus \textit{Notophthiracarus} Ramsay, 1966: 905
Type-species \textit{Phthiracarus maculatus} Trägårdh, 1931.

Phthiracarid mites with erect interlamellar setae and 5 pairs of setae on anal plate, 2 pairs greatly reduced; notogaster with 15 pairs of setae; genital setae in a single row of 5 on each accessory plate and 4 on each genital plate (i.e., 9 in each file).

\textit{N. australis} Ramsay, 1966 (Figure 16) — litter of halophytic scrub and mat plants, Little Brother Island, Cook Strait (Ramsay 1966b).

— / SD.

Genus \textit{Phthiracarus} Perry, 1841: 874
Type-species \textit{Hoplophora laevigata} Koch, 1841.

Phthiracarid mites with interlamellar setae minute or decumbent; anal plates each with 5 setae, 2 on inner margins.

\textit{P. pellucidus} Ramsay, 1966 (Figure 15) — litter of halophytic scrub and mat plants, Little Brother Island, Cook Strait (Ramsay 1966b).

— / SD.

Genus \textit{Protophthiracarus} Balogh, 1972: 43
Type-species \textit{Notophthiracarus chilensis} Balogh & Mahunka, 1967.

Phthiracarid mites with erect interlamellar setae and 7 pairs of setae on anal plate, none reduced; notogaster with 21 pairs of setae; genital setae numbering 9 pairs, 7 on accessory plate and 2 on genital plate.

\textit{P. neotrichus} (Wallwork, 1966) (Figure 13) — moss, Bee- man Hill, Campbell Island (Wallwork 1966).

WN / —.

Genus \textit{Brachychochthonius} Jacot, 1938: 130
Type-species \textit{Brachychochthonius jugatus} Jacot, 1938.

Brachychthonioid mites with 3 free suprapleural plates; posterior edge of hysterosoma with 2 tubercles; seta \(p2\) posterior to seta \(p1\); aggenital plate present.

01 Sculptured areas of prodorsum not in a medially situated column between bothridia; interlamellar setae minute; laterally, on either side of posterior-most division of notogaster, a sculptured area containing 6 small pores on lateral edge

— (Figure 22) \(\ldots\) \textit{novazealandicus}

— Five pairs of sculptured areas medially in a column between bothridia; interlamellar setae robust; posterolateral sculptured area without small pores on lateral edge \(\ldots\) \textit{jugatus}

\textit{B. jugatus} Jacot, 1938 — restiad and fern peat soils, and pasture soils on Kaipaki and Rukuhia peats, near Hamilton (Luxton 1982c,d, 1983a,b); lawn, Whakarewarewa, and luxuriant moss under manuka in thermal area, Rotorua (Hammer 1966); pastures on Taita hill soil and Pomare silt loam, DSIR Soil Bureau Experimental Station, Lower Hutt (McMillan 1969); pasture on Akatarawa hill soil, Hunt Valley (Adams 1971); pasture soil, Nelson (Martin 1978).

WO, BP, WN / NN.

\textit{B. novazealandicus} (Hammer, 1966) (Figure 22) — slightly moist moss on a slope with fern, Mirror Lake, Rotorua; dead leaves and thick moss in moist native forest, Fox Glacier (Hammer 1966).

BP / WD.

REMARKS. \textit{B. jugatus} is recorded as the subspecies \textit{suecica} Forsslund, 1942 by Hammer (1966), McMillan (1969), and Adams (1971). \textit{B. novazealandicus} was originally described in the genus \textit{Brachychthonius}.

Cohort \textit{ENARTHRONOTA}
Superfamily \textit{BRACHYCHTHONIOIDEA}
Family \textit{BRACHYCHTHONIIDAE}

Genus \textit{Brachychochthonius} Jacot, 1938: 130
Genus *Liochthonius* van der Hammen, 1959: 19

Type-species Brachychthonius perpusillus Berlese, 1910.

Brachychthoniid mites lacking suprapleural plates; hysterosoma not terminating in tubercles; seta p2 lateral to p1.

1. Prodorsum and notogaster lacking rounded patches of ornamentation (areoles) — *saltaensis* ... 2
 - Prodorsum and notogaster ornamented

2. (01) All setae simple, none expanded — *idem* ... 2
 - Some or all prodorsal and notogastral setae expanded

3. (02) Some setae simple; notogaster posterodorsally with a group of 8 areoles (4 large, 4 small) — *altimonticola* ... 3
 - All dorsal setae expanded

4. (03) Notogastral setae expanded but with smooth edges; a group of areoles between setae d1 — *altus* ... 4
 - Notogastral setae greatly expanded and with serrated edges; no areoles between setae d1 ...
 (Fig. 21) ... *fimbriatissimus*

L. altimonticola (Hammer, 1958) — dead leaves, Waitakere Range; moist Selaginella on tree trunk, New Plymouth; thick moss on rotten log, Lake Rotoriti; thin moss on vertical slope in shadow, Christchurch; thick, moist moss in *Nothofagus* forest, Milford Sound (Hammer 1966).

AK, TK / NN, MC, FD.

BP / —.

L. saltaensis (Hammer, 1958) — lawn with thick moss, Forest Research Institute, Whakarewarewa; moist moss and small ferns on slope with tall trees, Mirror Lake, Rotorua (Hammer, 1966).

BP / —.

Superfamily COSMOCHTHONOIDEA
Family COSMOCHTHONIIDAE

Genus *Cosmochthonius* Berlese, 1910: 221

Type-species Hypochthonius lanatus Michael, 1887.

Cosmochthoniid mites with some notogastral setae long, stout, and ciliate; tarsi I bidactylous, tarsi II-IV bidactylous or tridactylous.

C. semiareolatus Hammer, 1966 (Figure 20) — moist to wet moss from a spring in *Nothofagus* forest, Lake Rotoriti (Hammer 1966).

— / BR.

Superfamily HYPOCHTHONOIDEA
Family ENIOCHTHONIIDAE

Genus *Hypochthoniella* Berlese, 1910: 218

Type-species Hypochthonius minutissimus Berlese, 1904.

Eniochthoniid mites with anterior of 2 transverse hysterosomal sutures interrupted medially.

H. minutissima (Berlese, 1904) (Figure 23) — dense, green, luxuriant carpet of low ferns and moss by brook in deep shadow, Keri Keri; liverwort and moss on dead tree trunk in native forest, Waitakere Range (Hammer 1966); fern peat soils, near Hamilton (Luxton 1983a); edge of spring in wet meadow grown with moss, grass, and watercress, etc., Pupu Springs (Hammer 1966).

ND, AK, WO / NN.

Remarks. *H. minutissima* is recorded as *Eniochthonius minutissimus* (Berlese) by Hammer (1966).

Family HYPOCHTHONIIDAE

Genus *Hypochthonius* Koch, 1836: 3, 19

Type-species Hypochthonius rufulus Koch, 1836.

Hypochthoniid mites with a single, complete notogastral suture; notogaster yellowish or orange, somewhat flattened dorsoventrally; lateroabdominal gland absent.

H. luteus Oudemans, 1913 (Figure 24) — moist moss and grass under shrubs on outskirts of native forest, Waitakere Range (Hammer 1966); pasture on Akatarawa hill soil, Hutt Valley (Adams 1971).

AK, WN / —.

Genus alone recorded from pastures on Taita hill soil and Pomare silt loam, DSIR Soil Bureau Experimental Station, Lower Hutt (McMillan 1969).

WN / —.

Remarks. Hammer’s (1966) record of *H. luteus* differs somewhat from the typical form in the patterning of the integument, the structure of the setae, and the sculpturing of the rostrum.
Cohort NOTHRONATA
Superfamily HERMANNOIDEA
Family HERMANNIIDAE

Genus Phyllhermannia Berlese, 1917: 65
Type-species Hermannia phyllophora Michael, 1908.

Hermanniid mites with expanded, flattened notogastral setae.

01 Leg setae flattened, leaf-like, delicately patterned
 — (Fig. 26) ... *phyllophora*
 — Some leg setae perhaps somewhat expanded, but never leaf-like ... 2

02(01) Sensilli filiform, pointed at tip; lamellar setae foliate
 — Sensilli expanded at tip; lamellar setae simple ... 3

03(02) Notogastral setae foliate and elongate
 — Notogastral setae foliate and almost circular

Phyllhermannia Michael, 1908.

N. phyllophora Hammer, 1966 — moist grass, mosses, and lichens, Kerikeri; liverworts and mosses on dead tree trunk, and moist dead leaves, Waitakere Range; moist grass and dense mosses in native forest, New Plymouth (Hammer 1966).

AK, WO, TK / —.

Superfamily NANHERMANNOIDEA
Family NANHERMANNIIDAE

Genus Nanhermannia Berlese, 1913: 100
Type-species Nothrus nanus Nicolet, 1855.

Nanhermanniid mites with long, simple notogastral setae; notogaster lacking apophyses; posteriorly prodorsum bearing a chitinous ridge with more or less well developed backward projections.

01 Sensilli with heads capitate, almost disc-shaped ... *tenuicoma*
 — Sensilli narrow, the heads not disc-shaped ... 2

02(01) Interlamellar setae longer than the distance separating them; rostrum not protruding
 — Interlamellar setae not longer than the distance separating them; rostrum protruding like a nose
 — (Fig. 25) ... *acutisetosa*

N. acutisetosa Hammer, 1966 (Figure 25) — dead leaves and moist moss, Puketi and New Plymouth; dead leaves, Waitomo; moist moss and grass at foot of tree fern, Pauatahanui (Hammer 1966).

ND, WO, TK, WN / —.

N. nana (Nicolet, 1855) — restiad and fern peat soils, near Hamilton (Luxton 1982c, 1983a).

WO / —.

N. tenuicoma Hammer, 1966 — moist moss and grass in native forest, and moist moss beneath manuka. Waitakere Range; thick moss on log, Waitomo and Lake Rotokiti; moist moss beneath manuka, and moist moss, near Mirror Lake, Rotorua; edge of spring in meadow vegetation of moss, grass, watercress, etc., Pupu Springs; dense moss on small hillock in wet meadow, Lake Moke, Queenstown (Hammer 1966).

AK, WO, BP / NN, OL.

Superfamily NOTHROIDEA
Family CAMISIIDAE

Genus Camisia von Heyden, 1826: 612
Type-species Notaspis segnis Hermann, 1804.

Camisiid mites with margins of hysterosoma more or less parallel, posterior margin truncate; genital setae numbering 9 pairs, aggenital setae 2 pairs, anal setae 3 pairs, adanal setae 3 pairs.

C. segnis (Hermann, 1804) (Figure 30) — thermal area and dry moss, Rotorua, and leaves in understorey of redwood forest, Whakarewarewa (Hammer 1966).

BP / —.

REMARKS. The specimens recorded by Hammer (1966) are somewhat smaller than the typical form, and are described by Hammer as subspecies *nova*.

Genus Heminothrus Berlese, 1913: 98
Type-species Nothrus targinii Berlese, 1885.
Camisiid mites with median part of notogaster slightly concave; posteromarginal setae arising from apophyses; genital setae numbering 9–23 pairs, aggenital setae 2 pairs, anal setae 2 pairs, adanal setae 3 pairs; monodactylous.

01 Sensilli fusiform; notogastral setae long, c1 extending to base of d1 ... (Fig. 31) ... microclava
— Sensilli rod-shaped, only slightly flattened at tip; notogastral setae short, c1 not reaching d1 ... traversus

H. microclava Hammer, 1966 (Figure 31) — soaked moss in a spring in Nothofagus forest, Lake Rotoiti (Hammer 1966).
— / BR.

H. traversus Hammer, 1966 — moss and grass in native forest, Waitakere Range; dead leaves, Waitomo; moss and liverworts on slope, Lake Tarawera, Rotorua; moss and grass on lawn, and dead leaves on slope in native forest, New Plymouth; dead leaves in forest of (? cypresses, and liverworts and moss in forest, Pauatahanui; low plants at roadside, Christchurch; oozing water on rock, Port Hills, Christchurch (Hammer 1966).

AK, WO, BP, TK, WN / MC.

Genus Platyothrus Berlese, 1913: 99
Type-species Nothrus peltifer Koch, 1839.
Camisiid mites with lateral margins of hysterosoma convex; posteromarginal setae never on apophyses; genital setae numbering 13–25 pairs, aggenital setae 2 pairs, anal setae 2 pairs, adanal setae 3 pairs.

01 Parallel ridges present between median rows of notogastral setae ... 2
— No parallel ridges between medial rows of notogastral setae ... 3

02(01) Seta d1 not reaching base of seta d2; length more than 1000 µm ... (Fig. 32) ... major
— Seta d1 reaching base of seta d2; length less than 1000 µm ... peltifer

03(01) Distance between d1 setae subequal to distance between c1 setae ... tenuiclava
— Distance between d1 setae appreciably less than distance between c1 setae ... skottsbergii

P. major Hammer, 1966 (Fig. 32) — moss and dead leaves on slope in Nothofagus forest, Upper Takaka; moist moss and small ferns on rotten tree trunk in Nothofagus forest, Lake Rotoiti (Hammer 1966).
— / NN, BR.

P. peltifer (Koch, 1839) — lawns, moist moss, stream and pond edges, and meadows at Kerikeri, Waitangi, Waitakere Range, Rotorua, New Plymouth, Pauatahanui, Christchurch, Fox Glacier, and Milford Sound (never found in forests) (Hammer 1966); Kaiapapa and Rukuhia peat pastures, near Hamilton (Luxton 1982d, 1983b); pasture, Palmerston North (Manson 1959); pastures on Taita hill soil and Pomare silt loam, DSIR Soil Bureau Experimental Station, Lower Hutt; (McMillon 1969); pasture on Akatarawa hill soil, Hutt Valley (Adams 1971).

ND, AK, WO, BP, TK, WI, WN / MC, WD, FD, DN.

WN / —.

P. tenuiclava Hammer, 1966 — wet moss on stone in brook, moss on ground, moss on tree trunk, moss and needles under fir, and moss at edge of swamp, Kerikeri; moss and grass in garden, Waitakere Range; liverworts and small plants in thermal area, and moss and grass on lawn, Rotorua; moss and grass on lawn, Nelson (Hammer 1966); Coprosma leaf litter, Ohauora, White Island (Wise 1970).

ND, AK, BP / NN.

Family CROTONIIDAE

Genus Austronothrus Hammer, 1966: 33
Type-species Austronothrus curviseta Hammer, 1966.
Crotoniid mites with propodosoma almost as long as hysterosoma; notogastral setae numbering 14 pairs; posterior edge of hysterosoma rounded and without apophyses; epimera 4 separated by a deep groove which also cuts midway between epimera 3.

A. curviseta Hammer, 1966 (Figure 28) — moss on ground in deep shadow near brook, Kerikeri; State Forest, Whakarewarewa; moss and grass on lawn in deep shadow, New Plymouth; on ground in forest, Palmerston North; ‘Treelands’, Himatangi (Hammer 1966).

ND, BP, TK, WI, WN / —.

Genus Crotonia Thorell, 1876: 454
Type-species Westwoodia obtecta Pickard-Cambridge, 1875.
Crotoniid mites bearing conspicuous, variously formed apophyses on posterior edge of hysterosoma; lamellar setae on long apophyses; notogaster with 10 pairs of setae; genital setae numbering 7–11 pairs, aggenital setae 2 pairs, anal setae 3 pairs, adanal setae 3 pairs; tridactylous.

01 Posterior apophyses arising from a conspicuous caudal extension ... 2
— Posterior apophyses not arising from a conspicuous caudal extension ... 6
02(01) Posterior extension apparently double; dorsum of notogaster more or less demarcated from lateral field by a thinner strip of integument not extending posteriorly to seta f2; setae c1 and c3 long, approximately equal in length; epimeral setal formula 3-1-4-2

— Posterior extension single; dorsum of notogaster not demarcated from lateral field by a thinner strip of integument; setae c1 longer than c3; epimeral setal formula 3-1-4-3 or greater

... cervicorna

03(02) Dorsum heavily tuberculate-punctate

... tuberculata

— Dorsum not heavily tuberculate-punctate

... 4

04(03) Setae h2 set in cup-shaped apophyses; apophyses of setae f1 swollen

— Not as above

... 5

05(04) Apophyses of setae h2 elongate, swollen distally

... longibulbula

— Apophyses of setae h2 not elongate

... (Fig. 27) ... caudalis

06(01) Dorsal notogastral plate not demarcated from lateral field by a conspicuous plicature strip; setae c1 longer than c3

— Dorsal notogastral plate demarcated from lateral field by a conspicuous plicature strip; setae c1 shorter than c3, or as long

... 7

07(06) Dorsal notogastral plate narrow

— Dorsal notogastral plate broad

... 9

08(07) Setae c1 long, reaching bases of d2

— Setae c1 short, not reaching bases of d2

... unguifera

— Crotoniid mites lacking apophyses on posterior margin of hysterosoma; lamellar setae on short apophyses; notogaster with 16 pairs of setae; genital setae numbering 8 pairs, aggenital setae 2 pairs, anal setae 2 pairs, anal setae 3 pairs; tridactylous.

C. cervicorna Luxton, 1982 — leafmould in Unuwahoe Bush, and road to Tom Bowling Bay, Spirits Bay; litter, Russell State Forest, Bay of Islands; dry, fibrous mat of moss from dry wall, Aorangi Island, Poor Knights; Mangamuka Gorge, litter, Parahaki Park, Whangarei (Luxton 1982e).

— / — / Campbell I.

C. cophinarium (Michael, 1908) — leaf litter and moss, throughout New Zealand (Michael 1908, Hammer 1966, Luxton 1982e).

Ubiquitous.

C. cupulata Luxton, 1982 — moss at base of tanekaha tree, Kauri Ridge, near Opatau; thick mixed bush on steep slope, McKenzies Bush, near Opatau; moss on fallen log in mixed bush, near Oaonui; litter, Moor Park, Canaan Track, Abel Tasman National Park; wet moss under a bush on a grassy bank near beach, Ruby Bay (Luxton 1982e).

— / TK / NN.

C. longibulbula Luxton, 1982 — under manuka, DSIR Soil Bureau Experimental Station, Lower Hutt; moss in forest, Upper Takaka; hard beech litter, Canaan Road, Takaka Hill; in moss and under hard beech, Buller Gorge; litter, Charleston, Meybelle Bay, and Lake Kaniere (Luxton 1982e).

— / NN, BR, WD.

C. cervicorna Luxton, 1982 — leafmould in Unuwahoe Bush, and road to Tom Bowling Bay, Spirits Bay; litter, Russell State Forest, Bay of Islands; dry, fibrous mat of moss from dry wall, Aorangi Island, Poor Knights; Mangamuka Gorge, litter, Parahaki Park, Whangarei (Luxton 1982e).

— / — / Campbell I.

C. cophinarium (Michael, 1908) — leaf litter and moss, throughout New Zealand (Michael 1908, Hammer 1966, Luxton 1982e).

Ubiquitous.

C. cupulata Luxton, 1982 — moss at base of tanekaha tree, Kauri Ridge, near Opatau; thick mixed bush on steep slope, McKenzies Bush, near Opatau; moss on fallen log in mixed bush, near Oaonui; litter, Moor Park, Canaan Track, Abel Tasman National Park; wet moss under a bush on a grassy bank near beach, Ruby Bay (Luxton 1982e).

— / TK / NN.

C. longibulbula Luxton, 1982 — under manuka, DSIR Soil Bureau Experimental Station, Lower Hutt; moss in forest, Upper Takaka; hard beech litter, Canaan Road, Takaka Hill; in moss and under hard beech, Buller Gorge; litter, Charleston, Meybelle Bay, and Lake Kaniere (Luxton 1982e).

— / NN, BR, WD.

C. cervicorna Luxton, 1982 — leafmould in Unuwahoe Bush, and road to Tom Bowling Bay, Spirits Bay; litter, Russell State Forest, Bay of Islands; dry, fibrous mat of moss from dry wall, Aorangi Island, Poor Knights; Mangamuka Gorge, litter, Parahaki Park, Whangarei (Luxton 1982e).

— / — / Campbell I.

C. cophinarium (Michael, 1908) — leaf litter and moss, throughout New Zealand (Michael 1908, Hammer 1966, Luxton 1982e).

Ubiquitous.
01 Interlamellar setae not on apophyses ... concavus
— Interlamellar setae on apophyses ... 2

02(01) Notogastral setae not foliate, except for h2 ... (Fig. 29) ... pulcher
— Notogastral setae foliate, h2 not conspicuously different from the rest ... foliatus

— / — / Campbell I.

— / — / Macquarie I.

H. pulcher Hammer, 1966 (Figure 29) — thick moss on tree trunk, and dead kauri leaves and moist moss on ground, Puketi; liverworts and small ferns on log, Waitakere Range (Hammer 1966).
ND, AK / —.

Family MALACONOTHRIDAE

Genus Fossanothrus Hammer, 1962: 20
Type-species Fossanothrus latus Hammer, 1962.
Malaconothrid mites with epimera 4 posteriorly convex; notogaster with 14 pairs of setae; genital field beneath plates hexagonal in outline; genital setae numbering 8 pairs, aggenital setae absent, anal setae 1 pair, adanal setae 3 pairs; tridactylous.

F. novaezealandiae Hammer, 1966 (Figure 40) — wet moss on flat stone in a brook in deep shadow, Kerikeri (Hammer 1966).
ND / —.

Genus Malaconothrus Berlese, 1904: 24
Type-species Nothus monodactylus Michael, 1888.
Malaconothrid mites lacking bothridia and sensilli; genital setae numbering 4–6 pairs, aggenital setae absent, anal setae 1 pair or none, adanal setae 3 pairs; monodactylous.

01 Rostral setae and all ventral setae pilose; interlamellar and exobothridial setae subequal in size ... (Fig. 37) ... keriensis
— Rostral setae and all ventral setae smooth; interlamellar setae much larger than exobothridial setae ... 2

02(01) Small, angular projections laterally at dorsosejugal suture; region between interlamellar setae with a group of areoles ... zealandicus
— No angular projections at dorsosejugal suture; prodorsum without areoles ... indifferens

M. indifferens Hammer, 1966 — dead leaves, Waikomo; swampy area along sea, Pakawau; soaked moss on clay slope in forest, and wet moss and grass in swamp, Lake Moke, Queenstown (Hammer 1966).
WO / NN, OL.

M. keriensis Hammer, 1966 (Figure 37) — Kerikeri Falls (Hammer 1966).
ND / —.

M. zealandicus Hammer, 1966 — wet moss on stone in pond, Whakarewarewa; moist liverworts and moss in forest, Pauatahanui; wet moss at town reservoir, Nelson; wet moss on stone in brook, Nothofagus forest, Milford Sound (Hammer 1966).
BF, WN / NN, FD.

Genus alone recorded from restiad and fern peat soils, near Hamilton (Luxton 1982c, 1983a).
WO / —.

Genus Trimalaconothrus Berlese, 1916: 336
Type-species Malacothrus indusiatus Berlese, 1916.
Malaconothrid mites lacking bothridia and sensilli; genital setae numbering 4–12 pairs, aggenital setae absent, anal setae 1 pair, adanal setae 3 pairs; tridactylous.

01 Notogaster with irregular reticulation containing punctuation ... 2
— Notogaster lacking punctuation ... 4

02(01) Interlamellar setae shorter than distance separating them from setae c1 ...
— Interlamellar setae longer, overlapping base of setae c1 ... 3

03(02) Setae c1 reaching base of dl; setae dl reaching base of el; group of areoles between interlamellar setae in shape of inverted "T" ... opisthoseta
— Notogastral setae shorter; 3 pairs of areoles in a vertical patch between interlamellar setae ... oxyrinus

04(01) Prodorsum lacking areolation ... 5
— Prodorsum with at least some patches of areolation ... 7

05(04) Lamellar setae reaching base of rostral setae ... 6
— Lamellar setae not reaching base of rostral setae ... crispus
06(05) Rostral setae projecting beyond tip of rostrum, which is coarsely punctate ... **novus**

— Rostral setae not projecting beyond tip of rostrum, which is at most finely punctate ... **longirostrum**

07(04) Genital setae numbering 4 pairs... **angustirostrum**

— Genital setae numbering 5 pairs ...

... (Fig. 1–3) ... **tonkini**

— Genital setae numbering 6 pairs ... **sacculus**

AK / —.

T. crispus Hammer, 1962 — moist moss and liverworts on stone post, Kerikeri; thick moss on lawn under tall trees, New Plymouth (Hammer 1966).

ND, TK / —.

ND / —.

T. novus (Sellnick, 1921) — soaked moss, grass, and low plants near a spring, Lake Moke, Queenstown (Hammer 1966).

— / OL.

T. opisthoseta Hammer, 1966 — slightly moist moss under manuka, Waitakere Range; dead, moist leaves and moss in native forest, Fox Glacier; slightly moist moss and dead leaves in *Nothofagus* forest, Milford Sound (Hammer 1966).

AK / WD, FD.

— / WD.

T. platyrhinus Hammer, 1962 — thick moss on log in native forest, Waitomo; moss and grass on lawn under trees, moss on tree trunk, dead leaves, debris, and ferns on swampy ground, New Plymouth; dead *Nothofagus* leaves, Milford Sound (Hammer 1966).

WO, TK / FD.

T. sacculus Hammer, 1966 — wet moss on flat stone in small stream under tall trees, Kerikeri; wet moss at town reservoir, Nelson; wet moss on stone in brook through *Nothofagus* forest, and mosses on bank of fiord, Milford Sound (Hammer 1966).

ND / NN, FD.

WO / —.

Genus *Zeanothrus* Hammer, 1966: 20

Type-species *Zeanothrus elegans* Hammer, 1966.

Malaconothrid mites similar to *Trimalaconothrus* but with anterior border of hysterosoma distinctly arched; the arch continuing backwards behind lateroanterior border of hysterosoma; epimera 1 and 2 separated from the two sides by a narrow slit; epimera 3 not fully separated anteriorly; epimera 4 completely separated; genital setae numbering 5 or 6 pairs, aggenital setae absent, anal setae 1 pair, adanal setae 3 pairs; tridactylous.

Z. elegans Hammer, 1966 (Figure 39) — dry moss on ground under manuka in thermal area, and thick, moist moss under manuka, Rotorua (Hammer 1966).

BP / —.

Family NOTHRIDAE

Genus *Nothrus* Koch, 1836: 2, 17

Type-species *Nothrus palustris* Koch, 1839.

Nothrid mites lacking aggenital setae and with strong epimeral neotrichy; epimera 1 each with 5–7 setae; genital setae numbering 9 pairs, anal setae 2 pairs, adanal setae 3 pairs; monodactylous.

01 Sensilli expanded at tip; setae *h*1 and *h*2 much shorter than *h*3 ... **biciliatus**

— Sensilli not expanded; setae *h*1 and *h*2 subequal to *h*3 or longer ... (Fig. 34) ... **silvestris**

N. biciliatus Koch, 1841 — moss on lawn, Kerikeri; moss and liverworts on trunk of rimu tree, Puketi; moss and lichens on tree trunk, and moss and liverworts on ground, Waitomo; moss and grass on lawn, Rotorua (Hammer 1966).

ND, AK, WO, BP / —.

N. silvestris Nicolet, 1855 (Figure 34) — thin moss and liverworts on ground, Kerikeri (Hammer 1966).

ND / —.

REMARKS. The *N. silvestris* recorded by Hammer (1966) is the subspecies *anauniensis* Canestrini & Fanzago, 1876.

Genus *Novonothrus* Hammer, 1966: 24

Type-species *Novonothrus flagellatus* Hammer, 1966.

Nothrid mites with a broad lateral protuberance to the propodosoma anterior to leg I; sensilli flagelliform; epimera fused mediately, epimera 1 each with 9 setae; genital setae numbering 9 pairs, aggenital setae absent, anal setae 2 pairs, adanal setae 3 pairs; monodactylous.
01 Sensilli long, smooth; setae h2 expanded ... flagellatus
— Sensilli long, slightly setose, especially in distal third; setae h2 long, flagelliform ... (Fig. 33) . pupuensis

N. flagellatus Hammer, 1966 — dead leaves and moss on ground, Pukeni; liverworts and moss on dead tree trunk, Waitakere Range; dead leaves in Nothofagus forest, Milford Sound (Hammer 1966).
ND, AK / FD.

N. pupuensis Hammer, 1966 (Figure 33) — fern peat soils, near Hamilton (Luxton 1983a); soaked moss, grass, and watercress on edge of spring under low manuka, Pupu Springs (Hammer 1966).
WO / NN.

Family TRHYPOCHTHONIIDAE

Genus Allonothrus van der Hammen, 1953: 244
Type-species Allonothrus schuillingsi van der Hammen, 1953.
Trhypochthoniid mites with 30 pairs of flabelliform notogastral setae; either 7 or 13 or 14 pairs of genital setae, aggenital setae absent, 2 pairs of anal setae, 3 pairs of adanal setae; monodactylous or tridactylous.
Recorded as genus only (Figure 36) from Histiopteris leaf litter, low plants and grass above gannetry, rotten pohutukawa log, and Coprosma leaf litter, Ohauora, White Island (Wise 1970).
— / —.

Genus Mucronothrus Trägårdh, 1931: 31
Type-species Mucronothrus rostratus Trägårdh, 1931.
Trhypochthoniid mites lacking bothridia and sensilli; genital setae numbering 18-20 pairs, aggenital setae absent, anal setae 2 pairs, adanal setae 3 pairs; monodactylous.
M. nasalis Willmann, 1933 (Figure 38) — moss in running water at town reservoir, Nelson; wet moss, grass, and watercress at edge of spring, Pupu Springs; dripping wet moss near oozing spring in Nothofagus forest, Lake Rotori; soaked moss from a spring, Lake Moke, Queens-town; soaked moss from mountainside with oozing water, and dripping wet moss taken from a stone in icy brook in Nothofagus forest, Milford Sound (Hammer 1966).
— / NN, BR, OL, FD.

Genus Trhypochthonius Berlese, 1904: 27
Type-species Hypochthonius tectorum Berlese, 1896.
Trhypochthoniid mites with 10 pairs of genital setae, aggenital setae absent, anal setae 1 pair, adanal setae 3 pairs; sensilli present; tridactylous.

T. excavatus (Willmann, 1919) (Figure 35) — wet moss on stone in small stream, Kerikeri; wet moss and liverworts on edge of pond, Whakarewarewa; moist moss and liverworts on slope in forest, Paatahanu; edge of spring in moist to wet moss, grass, watercress, etc., Pupu Springs; dripping wet moss in a spring, Lake Moke, Queenstown (Hammer 1966).
ND, BP, WN / NN, OL.
Genus alone recorded from pastures on Taita hill soil and Pomare silt loam, DSIR Soil Bureau Experimental Station, Lower Hut (McMillan 1969).
WN / —.

Cohort CIRCUMDEHISCENTIAE (Pycnonoticae)
Superfamily AMERONOTHROIDEA
Family CYMBAEREMAEIDAE

Genus Bulleremaeus Hammer, 1966; 87
Type-species Bulleremaeus reticulatus Hammer, 1966.
Cymbaeremaeid mites with 12 pairs of notogastral setae, 6 pairs of genital setae, 1 pair of aggenital setae, 2 pairs of anal setae, 3 pairs of adanal setae; tibiae of all legs with a distal solenidion swollen at the tip; tridactylous.

B. reticulatus Hammer, 1966 — thick moss and liverworts in native tree-fern forest, Paatahanu; thick moss on dead tree trunk in Nothofagus forest, Lake Rotoiti (Hammer 1966).
WN / BR.

B. tuberculatus Hammer, 1966 (Figure 44) — thick, moist moss, white clover, and grass at roadside, Milford Sound (Hammer 1966).
— / FD.

Genus Capillibates Hammer, 1966; 89
Type-species Capillibates stagaardi Hammer, 1966.
Cymbaeremaeid mites bearing 14 or 15 pairs of setae on notogaster, genital setae numbering 5 pairs, aggenital setae absent, anal setae 2 pairs, adanal setae 3 pairs; tibiae III and IV each with a distal solenidion swollen at tip; tridactylous.

C. stagaardi Hammer, 1966 (Figure 43) — moist liverworts and moss on slope by Lake Tarawera,Rotorua; moist liverworts and moss in swamp grown with Scirpus in tree-fern forest, Paatahanu; thick moss on log in Notothofagus forest, Lake Rotori; moss and grass at roadside between beach and glacier, Fox Glacier (Hammer 1966).
BP, WN / BR, WD.
Genus Scapheremaeus Berlese, 1910: 226
Type-species Cymbaeremaeus paella Berlese, 1910.
Cymbaeremaeid mites with an evident marginal zone on notogastral dorsum; notogaster with 13 pairs of setae; genital setae numbering 6 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; tridactylous.

01 Notogaster with indistinct marginal zone ... emarginatus
 — Notogaster with distinct marginal zone ... 2

02(01) Notogastral setae of 2 different types; lamellar setae borne on strong apophyses ... (Fig. 42) ... insularis
 — Notogastral setae all similar; lamellar setae not on apophyses ... patella

S. emarginatus Hammer, 1966 — moist moss under ferns and tall trees, Mirror Lake, Rotorua; thick, moist moss and dead branches in Nothofagus forest, Milford Sound (Hammer 1966).
 BP / FD.

S. insularis Hammer, 1966 (Figure 42) — moist to wet luxuriant moss on ground, Kerikeri (Hammer 1966).
 ND / —.

S. patella (Berlese, 1910) — thin layer of dry moss on ground under manuka in thermal area, Rotorua (Hammer 1966).
 BP / —.

Genus alone recorded from foliage of Olearia colensoi (precise localities not known) (Spain & Harrison 1968) and from restiad and fern peat soils, near Hamilton (Luxton 1982c, 1983a).
 WO / —.

REMARKS. Hammer (1966) expresses some doubt about the generic status of S. emarginatus. Furthermore, New Zealand S. patella is recorded as being smaller than typical examples of the species, with thicker body setae and no netulation between the lamellae.

Family FORTUJNIIDAE

Genus Fortuyna van der Hammen, 1960: 2
Type-species Fortuyna marina van der Hammen, 1960.
Fortuyniid mites with a complex system of tubes and canals between bothridia and coxae; interlamellar setae absent; notogaster with 14 pairs of setae; genital setae numbering 5 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; monodactylous.

01 Setae c1 absent ... plumosus
 — Setae c1 present ... 2

02(01) Setae c3 present ... 3
 — Setae c3 absent ... 5

03(02) Notogastral setae smooth ... bathamae
 — Notogastral setae not smooth ... 4

F. clamellata Luxton, 1967 (Figure 41) — crevices on upper shore, South East Bay, Great Island, Three Kings; rock fissures on upper shore, Takatu Peninsula, near Matakana; crevices on upper shore, Russell, Bay of Islands (Luxton 1987).
 Three Kings Is, ND / —.

Family PODACARIDAE

Genus Alaskozetes Hammer, 1955: 16
Type-species Alaskozetes corticeus Hammer, 1955.
Podacarid mites with a distinct, evenly curved dorsosejugal suture; interlamellar setae present; notogastral setae variable in number (14 or 15 pairs); genital setae numbering 6 pairs (in 2 rows on each plate), aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; tridactylous.

A. antarcticus (Michael, 1903) (Figure 45) — salt-marsh soil, near Dunedin (Luxton 1967); on cliffs and on a freshwater pool, Macquarie Island (Dalenius & Wilson 1958, Daleniuss 1965); moss, algal, and Cetraria, Cotula plumosus, Coleobanthus mucoides, under stones, soil, and mud in royal penguin rookery, cave rookery debris, Poa hamiltonii, corrallor and albatross nest material, Punctillia macquariensis, coastal rocks, green algae and crevices on coastal rocks, under rocks, Stilbocarpa litter and feathers, and on spider egg case at North End, North Head, Aerial Cove, Garden Cove, Catch-me Point, Buckles Bay, Green Gorge, Hurst Point, Nuggets Point, Handspike Point, Gadget Gully, and Caroline Valley, Macquarie Island (Wallwork 1963, Watson 1967).
 — / DN / Macquarie Is.

REMARKS. The specimens from Macquarie Island represent the subspecies grandjeani Daleniuss & Wilson, 1958.

Genus Halozetes Berlese, 1917: 64
Type-species Notaspis marina Lohmann, 1907.
Podacarid mites with or without a distinct dorsosejugal suture (when present it is angular); interlamellar setae conspicuous; notogastral setae variable in number (14 or 15 pairs); genital setae numbering 6 pairs (in 2 rows on each plate), aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; tridactylous.

01 Setae c1 absent ... plumosus
 — Setae c1 present ... 2

02(01) Setae c3 present ... 3
 — Setae c3 absent ... 5

03(02) Notogastral setae smooth ... bathamae
 — Notogastral setae not smooth ... 4

-34-
04(03) Notogastral setae conspicuously tufted
 — Notogastral setae slightly barbed or
 roughened
 ... crozetensis

05(02) Notogastral setae roughened
 — Notogastral setae smooth
 ... belgicae

06(05) Interlamellar setae extending well
 beyond rostrum
 ... marinus

 — Interlamellar setae not extending
 much beyond rostrum
 ... intermedius

07(06) Setae ps1 much longer than ps2;
 length of female more than 800 µm
 ... macquariensis

 — Setae ps1 not longer than ps2;
 length of female less than 800 µm
 ... intermedii

II. bathamae Luxton, 1984 — from Chaetomorpha sp.,
extremely exposed rocky headland, Pipikeretu Beach,
Otago Peninsula (Luxton 1984).
— / — / Macquarie I.

H. belgicae (Michael, 1903) — algae, moss, herbs, litter,
soil, sheep dung, cave scrapings, bird nests, penguin rookeries,
and rock crevices at North Head. Aerial Cove, Camp Hill,
Garden Cove, Wireless Hill, Brothers Point, Isthmus,
Nuggets Point, Buckles Bay, Mt Hamilton, and
Caroline Valley, Macquarie Island (Dalenius & Wilson 1958,
— / — / Macquarie I.

H. crozetensis (Richters, 1908) — algae, moss, herbs, under
stones, and in bird nests, Courrejolles Peninsula, Campbell
Island (Wallwork 1966); algae, lichens, moss, herbs,
under stones, litter, soil, sheep dung, cave scrapings, bird
nests, penguin rookeries, loose feathers, in rock crevices,
and on a dead rabbit at Isthmus, Hasselborough Bay,
Garden Cove, Aerial Cove, Buckles Bay, and Bauer Bay.
Catch-me Point, Handspike Point, Brothers Point, Nug-
gets Point, Langdon Point, North Head, West Head,
North End, Camp Hill, Wireless Hill, Plateau, Sub-plateau,
Lambing Gully, Caroline Valley, and North East Coast,
Macquarie Island (Dalenius & Wilson 1958, Wallwork
— / — / Macquarie I.

H. intermedius Wallwork, 1963 — algae, herbs, soil, rock
crevices, cave debris, and penguin rookeries at Aerial
Cove, Garden Cove, Greca Gorge, Catch-me Point, Nug-
gets Point, Isthmus, and North Head, Macquarie Island
— / — / Macquarie I.

H. macquariensis (Dalenius & Wilson, 1958) — under
stones and driftwood at seepage and stream near top of
beach, Middle Bay, Campbell Island (Wallwork 1966);
margins of freshwater pools, Macquarie Island (Dalenius
& Wilson 1958, Dalenius 1965), rock crevices and mud
in penguin rookeries, mud banks of freshwater pools and
seal wallows. Poa hamiltoni tussocks, and coastal Colo-
banthus maricoides, Macquarie Island (Watson 1967).
— / — / Campbell I. Macquarie I.

H. marinus (Lohmann, 1906) — under stones in molly-
maw colony, Courrejolles Peninsula, Campbell Island
(Wallwork 1966); green seaweeds between tidemarks,
below tidemarks, and in freshwater lakes, Macquarie
Island (Womersley 1937); green algae from coastal rocks.
Garden Cove, Buckles Bay, Nuggets Point, and Catch-me
Point, Macquarie Island (Dalenius & Wilson 1958, Wall-
— / — / Campbell I. Macquarie I.

H. otagoensis Hammer, 1966 (Figure 47) — moist dung
mixed with grass in penguin’s nest on slope with Phor-
mium tenax by sea, and in Scirpus in a spring or in ooze-
ing water on same slope, Otago Peninsula (Hammer 1966);
salt-marsh soil, near Dunedin (Luxton 1967).
— / DN.

H. plumosus Wallwork, 1966 — Rocky Bay, Campbell
Island (Wallwork 1966).
— / — / Campbell I.

REMARKS. Wallwork’s (1966) H. marinus from Campbell
Island was described as subspecies minor.

Genus Podacarus Grandjean, 1955: 109
Type-species Podacarus auberti Grandjean, 1955.
Podacarid mites with a distinct angular dorsose-
jugal suture; interlamellar setae minute or absent;
notogaster with 15 pairs of setae; genital setae
numbering 6 pairs (in a single row on each plate),
aggenital setae 1 pair, anal setae 2 pairs, adanal setae
3 pairs; tridactylous.

P. auberti Grandjean, 1955 (Figure 46) — grassed soils
(land in algae on surface of freshwater pools), Macquarie
Island (Dalenius & Wilson 1958, Dalenius 1965); leaves
and litter of Poa hamiltoni, P. annua, and P. hamiltonii.
Priggenelia macquariensis, Cordula plumosa, Sterbocarca,
Colobanthus maricoides, Rhizoclonium sp., under stones
in penguin and cormorant rookeries, nest material, and
feathers at Hasselborough Bay, Tent Hill, Camp Hill,
Aerial Cove, Langdon Bay, Gadget Gully, North Head,
Catch-me Point, Garden Cove, Plateau, Buckles Bay,
and Caroline Valley, Macquarie Island (Wallwork 1963,
Watson 1967).
— / — / Macquarie I.

Superfamily BELBOIDEA
Family BELBIDAE

Genus Metabela Grandjean, 1936: 67
Type-species Damaeus papillipes Nicolet, 1855.
Belbid mites with 4 setae on genu IV, 3 setae on
trochanter IV, and 4 setae on trochanter III; solen-
idia of tibiae II and III with a companion seta.

M. obtusus Hammer, 1966 (Figure 48) — moss on ground, on trees, at edge of swamp, and with liverworts on road and on stone pond in deep shadow, Kerikeri; wet moss on stone in pond, Whakarewarewa; moss and clover on lawn, New Plymouth (Hammer 1966).

ND, BP, TK / —.

Superfamily CARABODOIDEA

Family CARABODIDAE

Genus Austrocarabodes Hammer, 1966: 59

Type-species **Carabodes ensifer** Sellnick, 1931.

Carabodid mites with 14 pairs of notogastral setae; genital setae numbering 4 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; monodactylous.

01 No ridge leading obliquely from base of interlamellar setae to lamellae; notogastral setae over-reaching bases of setae posterior to them; posterior-most notogastral setae curving inwards on to their opposing partner... (Fig. 51) .. **elegans**

— A ridge leading obliquely from base of interlamellar setae to lamellae; notogastral setae not, or barely, reaching bases of setae posterior to them... 2

02(01) Posterior transverse ridge of prodorsum in 3 separate parts ... **nodosus**

— Posterior transverse ridge of prodorsum entire ... **maculatus**

A. elegans Hammer, 1966 (Figure 51) — cleft with water, thin moss, and grass on wet soil near brook, Kerikeri; dead *Nothofagus* leaves, moist moss, soaked moss near a spring, *Nothofagus* forest, and moss and lichens in manuka and *Nothofagus* forest, Lake Rotoiti; moss and dead leaves in native forest, Fox Glacier; thin layer of liverworts on rotten log, and dead *Nothofagus* leaves and wet moss, Milford Sound (Hammer 1966).

ND, AK / BR.

C. variabilis Hammer, 1966 (Figure 50) — liverworts, mosses, and dead leaves on ground, and mosses on tree trunk in native forest, Waitakere Range; thick moss and lichens in manuka and *Nothofagus* forest, Lake Rotoiti (Hammer 1966).

ND, AK / BR.

Family TECTOCEPHEIDAE

Genus Tectocephus Berlese, 1913: 93

Type-species **Tegeocranus velatus** Michael, 1880.

Tectocephid mites with notogaster bearing 10 pairs of setae; genital setae numbering 6 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; monodactylous.

01 Interlamellar setae long, usually reaching base of lamellar setae; sculpture of notogaster consisting of round spots with lines radiating from them... **ornatissimus**

— Interlamellar setae short, never reaching base of lamellar setae; sculpture of notogaster consisting of densely clustered angular spots... (Fig. 50) .. **variabilis**

C. ornatissimus Hammer, 1966 — thick moss on tree trunk, and moss on ground, Puketi; liverworts on tree trunk in native forest, Waitakere Range; thick moss and lichens in manuka and *Nothofagus* forest, Lake Rotoiti (Hammer 1966).

ND, AK / BR.

T. velatus (Michael, 1880) (Figure 49) — moss on lawn, Kerikeri; Bay of Islands; moss on lawn, and liverworts and low ferns in native forest, New Plymouth; many records from Kerikeri and Poketi, also Waitakere Range, Rotorua, Waitomo, New Plymouth, Pauatahanui, Papu Springs, Upper Takaka, Dunedin, Milford Sound (Hammer 1967); Kaipaki and Rukuhia peat pasture soils, near Hamilton (Luxton 1982c, 1983b); restiad and fern peat soils, near Hamilton (Luxton 1982c, 1983a); pasture on

The text is a detailed description of various species of mites, their habitats, and distribution patterns. It includes specific details about the environments in which these mites are found, such as moss, liverworts, and trees, in various locations across New Zealand. The text also references specific species and their distinguishing characteristics. The layout is consistent with a scientific paper, providing a structured overview of the mite species within the Carabodoidea family.
Taita hill soil and Pomare silt loam, DSIR Soil Bureau Experimental Station, Lower Hutt (McMillan 1969); pasture on Akatarawa hill soil, Hutt Valley (Adams 1971). ND, AK, WO, BP, TK, WN / NN, FD, DN.

Superfamily CEPHEOIDEA

TIKIZETIDAE new family

Cepheoid mites with propodosoma narrow relative to the rounded hysterosoma; notogaster laterally and posteriorly wrinkled; lamellae present; sensilli flagelliform; humeral projections present; notogastral setae numbering 9 pairs; genital setae numbering 7 pairs; monodactylous; femora and coxae III and IV toothed.

Type-genus Tikizetes Hammer.

Genus Tikizetes Hammer, 1967: 5

Type-species Tikizetes spinipes Hammer, 1967.

Tikizetid mites with true lamellae standing free of prodorsum as thin blades; notogaster with 6 pairs of long, pectinate, submarginal setae and 3 small posteromarginal ones; anal field very large; genital setae numbering 7 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; monodactylous.

T. spinipes Hammer, 1967 (Figure 52) — moist to wet liverworts and low mosses on thick tree trunk in native forest, Fox Glacier; mouldering leaves in native forest, Lake Matheson (Hammer 1967). — / WD.

Superfamily EREMULOIDEA

Family DAEAEOLIDAE

Genus Fosseremus Grandjean, 1954: 340

Type-species Damaeosoma laciniatum Berlese, 1905.

Damaeolid mites with 4 semicircular depressions in the notogaster; notogastral setae numbering 11 pairs, genital setae 6 pairs, aggenital setae 3 pairs, monodactylous.

F. laciniatus (Berlese, 1905) (Figure 54) — moss on ground, dead leaves, liverworts, and dripping wet moss, Kerikeri; also Waitakere Range, Waitomo, Rotorua, Pauatahanui, Queenstown, Milford Sound (Hammer 1966). ND, AK, WO, BP, WN / OL, FD.

REMARKS. This species is recorded as F. quadripertitus Grandjean by Hammer (1966).
04(01) Notogaster with a chequered pattern of hexagonal reticulations containing dark, round tubercles on their margins; bothridia and sensilli not conspicuously dark; sensilli stalks emerging from bothridia ... cryptonotus

— Notogaster not patterned as above; bothridia and sensilli conspicuously dark; sensilli stalks not emerging from bothridia ... (Fig. 56) ... nigroclava

P. cryptonotus Hammer, 1966 — soaked moss and liverworts near a spring in Nothofagus forest, Lake Rototiti; thick moss on ground and on dead branches in Nothofagus forest, Milford Sound (Hammer 1966).

— / BR, FD.

— / FD.

P. latoclava Hammer, 1966 — wet moss on stone in Nothofagus forest, Milford Sound (Hammer 1966).

— / FD.

P. nigroclava Hammer, 1966 (Figure 56) — thin moss and lichens on tree, Kerikeri (Hammer 1966).

ND/—.

P. sexpilosus Hammer, 1966 — luxuriant carpet of low plants, ferns, and mosses near brook in deep shadow, Kerikeri; moist Selaginella on tree trunk in native forest, New Plymouth (Hammer 1966).

ND, TK/—.

Genus alone recorded from moss and white clover on lawn, New Plymouth (Hammer 1966).

TK/—.

REMARKS. P. gymnonotus, P. sexpilosus, and P. cryptonotus are ascribed to Ramsay by Hammer (1966). However, the descriptions have never been formally published by him, and the names must therefore be ascribed to Hammer. P. nigroclava is erroneously referred to in the figure legends of Hammer (1966) as "P. microclava". The record of "P. microclava" in Spain & Luxton (1971) is therefore invalid.

Genus Pedrocortesia Hammer, 1958: 40

Type-species Pedrocortesia mirabilis Hammer, 1958.

Plateremaeid mites with foveolate notogaster and lamellar setae originating laterally; notogaster with 5 pairs of setae and 3 pairs of long fissures; genital setae numbering 7 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; tridactylous.

01 Sensilli slender; pore ia vertically aligned ... (Fig. 55) ... rotoruensis

— Sensilli fusiform; pore ia obliquely inclined ... 2

02(01) Anterior border of prodorsum with a pitted hyaline membrane; notogastral setae on tubercles ... luteomarginata

— Not as above ... ?australis

— / — / Campbell I.

— / FD.

P. rotoruensis Hammer, 1966 (Figure 55) — thermal area, Rotorua (Hammer 1966).

BP/—.

REMARKS. The specific identity of the Campbell Island material is queried by Wallwork (1966).
Genus alone recorded from pasture on Taita hill soil, DSIR Soil Bureau Experimental Station, Lower Hutt (McMillan 1969).

WN / —.

Superfamily HYDROZETOIDEA
Family HYDROZETIDAE

Genus Hydrozetes Berlese, 1902: 698
Type-species Notaspis lacustris Michael, 1882.

Hydrozetid mites with a thick, weakly serrate seta on each side of claw on tarsus I; notogastral setae numbering 16 or 17 pairs, genital setae 6 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; monodactylous.

H. lemnae (de Coggi, 1899) (Figure 58) — wet moss on stone in brook, moss on edge of swamp, and thick, dead Selaginella in shadowed deep cleft, Kerikeri; wet moss on stone in shallows of pond, Rotorua; wet moss, Lemna, watercress on edge of spring, Pupu Springs; soaked moss on shore of Lake Hayes, Queenstown (Hammer 1966).

ND, BP / NN, OL.

Superfamily LIACAROIDEA
Family ADHAESOZETIDAE

Genus Adhaesozetes Hammer, 1966: 84
Type-species Adhaesozetes barbarae Hammer, 1966.

Adhaesozetid mites with complex lamellae, consisting of several parts; bothridia concealed under part of the lamellae; notogaster with 12 pairs of setae; genital setae numbering 6 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; tarsi tridactylous and each with a well developed pulvillus.

A. barbarae Hammer, 1966 (Figure 61) — liverworts and low plants under manuka in thermal area, and moist moss on vertical slope with ferns. Mirror Lake, Rotorua (Hammer 1966).

BP / —.

Family ASTEGISTIDAE

Genus Cultroribula Berlese, 1908: 9
Type-species Notaspis juncta Michael, 1885.

Asteigid mites with cusps not projecting beyond rostrum; genital setae numbering 4 or 5 pairs, aggenital setae absent, anal setae 2 pairs, adanal setae 2 pairs; monodactylous.

C. lata Aoki, 1961 (Figure 59) — slightly moist moss and small ferns under manuka in thermal area. Rotorua (Hammer 1966); restied and fern peat soils, near Hamilton (Luxton 1982c, 1983a) and Rukuhia peat pasture, near Hamilton (Luxton 1982d).

WO, BP / —.

Genus MAORIZETIDAE new family

Liacaroid mites with lamellae fused medially; lamellar setae on cuspis; notogaster globular, aseptose; genital and anal fields touching; genital setae numbering 6 pairs; anal setae numbering 2 pairs; tridactylous.

Genus Maorizetes Hammer, 1966: 98
Type-species Maorizetes ferox Hammer, 1966.

Maorizetid mites with lamellae fused anteromedially, forming a broad arch; notogaster asetose; genital and anal fields contiguous; genital setae numbering 6 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; tridactylous.

M. ferox Hammer, 1966 (Figure 60) — moist moss, grass, lichens, dead leaves on ground, and on tree trunks, Kerikeri and Pukeni; also Waiatekere Range, Waitomo, Rotorua, New Plymouth, Christchurch, Milford Sound (Hammer 1966).

ND, AK, WO, BP, TK / MC, FD.

Family METRIOPPIIDAE

Genus Macquarioppia Wallwork, 1964: 605
Type-species Macquariella striata Wallwork, 1963.

Metrioppiid mites with 9 pairs of notogastral setae; genital setae numbering 6 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; tridactylous.

M. striata (Wallwork, 1963) (Figure 63) — herbfield plants, Stilbocarpa litter, Pleurophyllum litter, Poa hamiltoni litter, cave scrapings, green algae, and coastal rocks at Plateau, Subplateau, Gadget Gully, Caroline Valley, Brothers Point, and North Head, Macquarie Island (Wallwork 1963, Watson 1967).

— / — / Macquarie I.

Genus Pseudoceratoppia Hammer, 1967: 6
Type-species Pseudoceratoppia sexsetosa Hammer, 1967.

Metrioppiid mites with long, converging lamellae; hysterosoma without pteromorphae, globular, and with lateroanterior borders depressed; notogaster with 0–3 pairs of setae; genital setae numbering 6 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; transverse ridge immediately anterior to genital field, with 2 curved ridges running from anterior border of genital field to discidium; tridactylous.
REMARKS. *L. nigricans* is ascribed to Ramsay by Hammer (1966). However, the description was never formally published by him, and the name must therefore be ascribed to Hammer.

Superfamily OPPIOIDEA
Family AUTOGENETIDAE

Genus Austrogneta Balogh & Csiszar, 1963: 480
Type-species *Austrogneta multipilosa* Balogh & Csiszar, 1963.

Autogenetid mites with an entire rostrum and 13 pairs of notogastral setae; genital setae numbering 5 or 6 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs.

01 Anterior edge of notogaster with 4 projections; sensilli smooth; genital setae numbering 6 pairs ... *quadridentata*
— Anterior edge of notogaster with 2 projections; sensilli pilose; genital setae numbering 5 pairs ... (Fig. 66) ... *multipilosa*

Family OPPIIDAE

Genus Acetopidia Balogh, 1983: 54
Type-species *Operculoppia crassiseta* Hammer, 1968.

Oppiid mites with horseshoe-shaped costulae and transcostula; rostrum entire; sensilli short, lanceolate; bothridia closed with opercula; cristae absent; notogaster with 9 pairs of setae, setae *ta* absent; genital setae numbering 4 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; poriad in apoanal position.

01 Length more than 800 µm; notogastral setae smooth ... (Fig. 75) ... *crassiseta*
— Length less than 700 µm; notogastral setae pilose ... *jelevae*

Superfamily LIODOIDEA
Family LIODIDAE

Genus Liodes von Heyden, 1826: 608
Type-species *Notaspis theleproctus* Hermann, 1804.
Liodid mites lacking lamellar setae and with 3 pairs of anal setae; dorsum of notogaster more or less convex and with sculpture.

L. nigricans Hammer, 1966 (Figure 64) — Kerikeri Falls (Hammer 1966).

ND / —.
moss and dead leaves in native forest, and grass and low plants by roadside in mixed Nothofagus forest, Fox Glacier; thick moss on ground in Nothofagus forest, and dead Nothofagus leaves, Milford Sound (Hammer 1968).

ND, AK / WD, FD.

Genus Amerioppia Hammer, 1961: 54

Type-species Amerioppia rudentigera Hammer, 1961.

Oppiid mites lacking costulac and interlamellar setae; rostrum entire; sensilli slightly fusiform or lanceolate; cristae absent; notogaster with 9 or 10 pairs of setae, setae _ta_ present or absent; genital setae numbering 6 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; _pori iad_ in adanal position.

A. longiclava Hammer, 1962 — slightly moist moss and grass, Waitakere Range; dry moss on ground, and moist dead leaves and moss in thermal area, Rotorua; _with costulae and transcostula_; moss and liverworts on vertical slope above small brook in deep shadow, and dead Selaginella vegetation under tall trees and shrubs, Kerikeri; moss and small ferns on log in native forest, Waitakere Range (Hammer 1968).

ND, AK / —.

A. arcualis (Berlese, 1913) — in valley with river, moss on mounding log, thin layer of moss and liverworts on grown-over road in deep shadow, and dead Selaginella vegetation under tall trees and shrubs, Kerikeri; moss and small ferns on log in native forest, Waitakere Range (Hammer 1968).

ND, AK / —.

A. winkleri (Hammer, 1968) (Figure 95) — moist grass and _Hieracium_ by roadside, Kerikeri; thin layer of moist moss and small ferns under manuka; thermal area, Rotorua (Hammer 1968).

ND, BP / —.

Genus Austroppia Balogh, 1983: 34

Type-species Oppia magellanae Hammer, 1962.

Oppiid mites with costulac and transcostula; rostrum tripartite; sensilli fusiform, with 4 or 5 short cilia; cristae absent; notogaster with 9 or 10 pairs of setae, setae _ta_ present or absent; genital setae numbering 6 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; _pori iad_ in apoanal position.

A. crozetensis (Richters, 1908) (Figure 96) — _Colobanthus_ cushions on rock, Macquarie Island (Daleni 1958, Daleni 1965); cave rookery debris and _Poa hamiltonii_ litter, _Pleurophyllum_ debris, _Stilbocarpa_ litter, nest material, _Colobanthus muscoideus_ and _Paccinella macquarrensis_ litter, cave scarpings and soil, at North Head, North End, Langdon Point, Nuggets Point, Lambing Gully, Wireless Hill, Handspike Point, Aerial Cove, Mt Elder, Plateau, Brothers Point, Douglas Point, and Scoble Lake, Macquarie Island (Wallwork 1963, Watson 1967).

— / / Macquarie I.

Baioppia new genus

Type-species Lanceoppia moritzi Hammer, 1968.

Oppiid mites with costulac and transcostula distinct and tracing a quadrangle; rostrum entire; sensilli fusiform, smooth; lamellar setae very thin; cristae absent; notogaster with 9 pairs of short, smooth setae, setae _ta_ absent; genital setae numbering 6 pairs, aggenital setae _1_ pair, anal setae 2 pairs, adanal setae 3 pairs; _setae ad3_ preanal, _ad1_ postanal; _pori iad_ in apoanal position; _tiabae_ I and II with a long, pectinate seta medially.

B. moritzi (Hammer, 1968) (Figure 102) — wet moss and liverworts on vertical slope above small brook in _Nothofagus_ forest, Lake Rotoiti (Hammer 1968).

— / BR.
Genus Belloppia Hammer, 1968: 15

Type-species *Belloppia wallworki* Hammer, 1968.

Oppiid mites with costulae; rostrum tripartite; sensilli capitate; cristae forming a projecting chitinous structure at anterior border of notogaster; notogaster with 10 pairs of setae, setae *ta* present; genital setae numbering 5 pairs, aggenital setae 1 pair; anal setae 2 pairs, adanal setae 3 pairs; pori *iad* in adanal position.

01 Lamellar setae medial to costulae; notogaster with a conspicuous tooth on each anterolateral border ... 2
 — Lamellar setae on costulae; notogastral shoulders without teeth ... 3

02(01) Notogastral setae long and robust, *ta* overreaching bases of *te* ... *beemanensis*
 — Notogastral setae shorter ... (Fig. 89) ... *wallworki*

03(01) Lateral borders of costulae with strong incisions ... *evansi*
 — Lateral borders of costulae entire ... *shealsi*

B. beemanensis (Wallwork, 1964) — moss, Beeman Hill, Campbell Island (Wallwork 1964a).

— / — / Campbell I.

B. evansi Hammer, 1968 — thin moss on wet soil near brook in deep cleft with trees, and in moss on ground in deep shadow, Kerikeri (Hammer 1968).

ND / —.

B. shealsi Hammer, 1968 — thick, moist to wet moss on ground in native forest, Puketi; moist moss on ground under manuka, Waitakere Range; thick, moist moss under tree fern, in native forest, Pauatahanui; thick, moist moss on dead branches in tree-fern forest, Milford Sound (Hammer 1968).

ND, AK, WN / FD.

B. wallworki Hammer, 1968 (Figure 89) — moist to wet (?) *Leucobryum* on slope; thick, moist moss on dead tree trunk, dripping wet moss and liverworts in oozing water from brook, and moss and liverworts on vertical slope above brook in shadow, *Nothofagus* forest, Lake Rototiti (Hammer 1968).

— / BR.

Genus Brachioppiella Hammer, 1962: 47

Type-species *Brachioppiella periculosa* Hammer, 1962.

Oppiid mites with or without costulae; rostrum entire; sensilli pectinate or radiate; cristae absent; notogaster with 9 or 10 pairs of setae, setae *ta* present or absent; genital setae numbering 4 pairs, aggenital setae 1 pair; anal setae 2 pairs, adanal setae 3 pairs; setae *ad3* preanal, *ad1* postanal; pori *iad* anterolateral to anal field.

C. diaphora (Wallwork, 1964) (Figure 74) — moss, Beeman Hill, Campbell Island (Wallwork 1964a).

— / — / Campbell I.

Genus Convergoppia Balogh, 1983: 37

Type-species *Oppia pletzeni* Hammer, 1968.

Oppiid mites with costulae converging to lamellar setae; rostrum entire; sensilli setiform; cristae...
absent; notogaster with 9 pairs of setae, setae \(ta\) absent; genital setae numbering 6 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; pori \(iad\) in apoanal position.

\(C. \) pretzeni (Hammer, 1968) (Figure 104) — mouldering leaves and debris on slope above brook in deep shadow, Kerikeri (Hammer 1968).

Genus Globoppia Hammer, 1962: 44

Type-species *Globoppia intermedia* Hammer, 1962.

Oppiid mites without costulae, or with a costula remnant only, near lamellar setae; rostrum entire or incised; sensilli capitate or fusiform, with a long stalk; cristae absent; notogaster with 10 pairs of setae, setae \(ta\) present; genital setae numbering 6 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; pori \(iad\) in apoanal position.

01 Length less than 400 \(\mu m\); costula remnant present, near lamellar setae ...

— Length greater than 500 \(\mu m\); costulae absent ...

02(01) Rostrum with a pair of strongly incurved lateral points ...

— Rostrum entire ...

\(G. \) campbellensis Wallwork, 1964 — moss, Beeman Hill, Campbell Island (Wallwork 1964a).

— / — / Campbell I.

\(G. \) gressitti Wallwork, 1964 — moss, Beeman Hill, Campbell Island (Wallwork 1964a).

— / — / Campbell I.

\(G. \) nidicola Hammer, 1968 (Figure 99) — nest of *Puffinus griseus*, Greymouth (Hammer 1968).

— / BR.

Genus *Hamoppia* Hammer, 1968: 28

Type-species *Hamoppia lionsi* Hammer, 1968.

Oppiid mites without costulae; rostrum entire, but with a 'V'-shaped fissure; sensilli setiform, apically finely dilated; cristae absent; notogaster with 10 pairs of setae, setae \(ta\) present; genital setae numbering 6 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; pori \(iad\) in apoanal position; femora 11 bearing a small, hook-like process.

01 Costulae conspicuous ...

— Costulae not conspicuous ... *thamdrupi*

\(H. \) lionsi Hammer, 1968 (Figure 105) — thick, moist *Leucobryum* near spring in *Nothofagus* forest, Lake Rotoiti (Hammer 1968).

— / BR.

\(H. \) thamdrupi Hammer, 1968 — moss and grass in native forest, Waitakere Range (Hammer 1968).

AK / —.

Genus *Insculptoppia* Subias, 1980: 295

Type-species *Damaeosoma insculpta* Paoli, 1908.

Oppiid mites without costulae; rostrum entire; sensilli pectinate or fusiform and unilaterally ciliate; cristae absent; notogaster with 9 pairs of setae, setae \(ta\) absent; genital setae numbering 5 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; pori \(iad\) in adanal position.

\(I. \) suciui (Hammer, 1968) (Figure 91) — moist moss and grass under bushes in garden on edge of native forest, Waitakere Range (Hammer 1968).

AK / —.

Genus *Laminoppia* Hammer, 1968: 30

Type-species *Laminoppia blocki* Hammer, 1968.

Oppiid mites with horseshoe-shaped costulae and transcostula; rostrum entire; sensilli filiform; cristae absent; notogaster with 10 pairs of setae, setae \(ta\) present; genital setae numbering 4 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; pori \(iad\) in apoanal position; all femora with broad laminae.

\(L. \) blocki Hammer, 1968 (Figure 71) — mouldering *Nothofagus* leaves, Lake Rotoiti; wet moss in *Nothofagus* forest, Milford Sound (Hammer 1968).

— / BR, FD.
Genus *Lanceoppia* Hammer, 1962: 42
Type-species *Lanceoppia hexapili* Hammer, 1962.

Oppiid mites with costulae absent or faintly developed; rostrum entire or incised; sensilli various - elongate, lanceolate, fusiform, or bacilliform; cristae absent; notogaster with 9 or 10 pairs of setae, setae *ta* present or absent; genital setae numbering 6 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; pori *iad* in apoanal position.

01	Lamellar setae extending beyond base of rostral setae	2
02(01)	Setae *ti* posterior to setae *te* on notogaster	3
03(02)	Interlamellar setae long, able to overlap dorsosejugal suture; length less than 700 µm	*willmanni*
04(03)	Posterior borders of bothridia with lobes; notogaster longer than broad	*jacoti*
05(04)	Bothridia surrounded by hyaline membranes with a radiating pattern	*thori*
06(05)	Anterior borders of coxae III with 4 strong teeth	*berlesei*
07(06)	Interlamellar setae long, able to overlap dorsosejugal suture	*banksi*
08(07)	Anterior border of notogaster with 2 low tubercles behind bothridia; no ‘V’-shaped fissure behind tip of rostrum	*vanderhammeni*
09(07)	Length less than 500 µm; sensilli extremely long, narrow, and pilose, longer than prodorsum	*mahunkai*

10(09) Notogastral setae barbed | *bertheti* |
11(01) Sensilli blunt at tip | 12 |
12(11) Sensilli bacilliform | *woodringi* |
13(12) Length greater than 450 µm | *poppi* |
14(13) Rostrum with a ‘V’-shaped fissure on dorsal surface; setae *ta* absent | *haarovi* |
15(14) Anterior edge of notogaster straight; 2 pairs of areoles between interlamellar setae | *schweizeri* |
16(11) Sensilli serrate on posterior border | *feideri* |
17(16) Sensilli pointed at tip, spindle-like | 18 |
18(17) Setae *ta* present; pori *im* posterior to setae *r3* | *menkei* |
19(18) Setae *te* and *ti* at same horizontal level | 20 |
20(19) Rostrum produced into a very sharp point | *seydi* |
21(19) Interlamellar setae represented by alveoli | *perezinigoi* |
22(21) Tip of rostrum with a ‘W’-shaped lenticulus | *turki* |
23(17) Setae *ta* absent | 24 |
24(23) Three pairs of areoles between bothridia | *maerkeli* |
25(24) Interlamellar setae minute, not reaching bothridia; lamellar setae minute, not reaching each other ... *knullei

— Interlamellar setae long, reaching bothridia; lamellar setae as long as the distance between them ... *schusteri

26(23) Two chitinous processes in interlamellar region ... 27

— No chitinous processes in interlamellar region ... 28

27(26) Chitinous processes below interlamellar setae; at least 2 areoles in interlamellar region ...

— Chitinous processes between interlamellar setae; no areoles in interlamellar region ...

28(26) Dorsosejugal suture with a pair of condyles below bothridia; length greater than 550 μm ...

— Dorsosejugal suture lacking condyles; length less than 550 μm ...

29(28) Sensilli conspicuously expanded in middle; 2 pairs of areoles between interlamellar setae ...

— Sensilli not expanded in middle; 1 pair of areoles between interlamellar setae ...

L. banksi Hammer, 1968 — on stump in pine wood, Bay of Islands (Hammer 1968).

ND / BR.

L. becki Hammer, 1968 — dead, moist to wet leaves and moss under kauri tree, Puketi (Hammer 1968).

ND / —.

L. berthesi Hammer, 1968 — thin layer of moss on ground near brook in deep cleft with tall trees, Kerikeri (Hammer 1968).

ND / —.

ND / —.

L. esiszerae Hammer, 1968 — mouldering leaves and debris on slope above brook under tall trees and shrubs, Kerikeri (Hammer 1968).

ND / —.

WO / —.

L. feideri (Hammer, 1968) — liverworts and Leucobryum on log in native forest, Waitakere Range; *Nothofagus* forest in moist to wet (?)Leucobryum on slope, mosses on ground and on log, and wet moss and liverworts above small brook, Lake Rotoiti (Hammer 1968).

AK / BR.

L. haarlovi (Hammer, 1968) — luxuriant liverworts on forest soil in native forest, Fox Glacier (Hammer 1968).

AK / BR, WD.

L. jacto Hammer, 1968 — thin layer of moss on wet soil, lichens and moss on mouldering branch, and moss and needles under fir tree, Kerikeri; moss and liverworts on ground, and moss and small ferns on log, native forest, Waitakere Range, under manuka in thermal area, in moss, liverworts, and tiny ferns, and in luxuriant (?)Leucobryum, Rotorua; dead *Nothofagus* leaves, Lake Rotoiti (Hammer 1968).

ND / —.

L. knullei Hammer, 1968 — luxuriant liverworts on forest soil in native forest, Fox Glacier (Hammer 1968).

WD / —.

L. luxtoni Hammer, 1968 — thick, wet mosses on ground by brook in deep cleft with dense trees and shrubs, moss on mouldering tree trunk, Selaginella vegetation, and dead leaves and debris, Kerikeri; moss, liverworts, and dead leaves in tree-fern forest between huge rocks, Waitomo; thick moss in native forest, Lake Matheson (Hammer 1968).

ND, WO / WD.

L. maerkeli Hammer, 1968 — moss and dead leaves in native forest, Waitakere Range; mouldering *Nothofagus* leaves, Lake Rotoiti; grass and low plants by roadside in mixed forest between glacier and coast, Fox Glacier (Hammer 1968).

AK / BR, WD.

TK / —.

L. menkei Hammer, 1968 — moist moss on ground in *Nothofagus* forest, Lake Rotoiti; wet liverworts, moss, and grass on slope with oozing water, Christchurch; thick moss at foot of giant tree and dead leaves in native forest, and moss, plants, and grass by roadside in more open forest, Fox Glacier (Hammer 1968).

— / BR, MC, WD.

L. perezinigoi (Hammer, 1968) — moss and liverworts on ground in native forest, Waitakere Range (Hammer 1968).

AK / —.

L. piffli Hammer, 1968 — liverworts and small ferns on log in native forest, Waitakere Range (Hammer 1968).

AK / —.

L. poppi Hammer, 1968 — wet moss and liverworts in depression grown with low *Scirpus* by brook in native tree-fern forest, Pauatahanui (Hammer 1968).

WN / —.

L. ramseyi Hammer, 1968 — on rotten bridge and in cleft with water, Kerikeri; moist liverworts and mosses on tree trunk in native forest, Waitakere Range; thin layer of moss
in shadow at vertical roadside, and moist *Polytrichum*
and small plants on slope near oozing water, Christchurch; thick mosses on big tree in native forest, Fox Glacier; thick moss, grass, and white clover by roadside. Milford Sound (Hammer 1968).

ND, AK / MC, WD, FD.

/ NC—WD.

L. schusteri Hammer, 1968 — low ferns and mosses on wet soil near brook in deep cleft with tall trees, moss and needles under dead fir tree, and wet *Selaginella* under trees, Kerikeri; moist moss and liverworts on ground in native forest, Waitakere Range; dead leaves under trees in deep shadow by roadside, Waitomo; moist moss and liverworts on forest (cypress) soil, Pauatahanui; luxuriant moss and liverworts under trees on riverbank, Hokitika (Hammer 1968).

ND, AK, WO, WN / WD.

L. schweizeri Hammer, 1968 — thick, moist moss on ground in *Nothofagus* forest, Lake Rotoiti; thick moss at foot of giant tree in native forest, Fox Glacier; thick moss on dead tree trunks and branches in *Nothofagus* forest, and luxuriant moss under shadowed ferns, Milford Sound (Hammer 1968).

/ BR, WD, FD.

L. selinicki Hammer, 1968 — dead kauri leaves and wet mosses on ground in native forest, Puketi; thin moss on ground near brook in shadowed cleft, Kerikeri (Hammer 1968).

ND / —.

L. seydi Hammer, 1968 — thin layer of moist moss on ground near brook in deep cleft with shrubs and tall trees, Kerikeri (Hammer 1968).

ND / —.

L. strenzkei Hammer, 1968 — thick mosses, grass, and small ferns on ground near brook in deep, shadowed cleft, Kerikeri; dead leaves in shadow by roadside, Waitomo; thick, dry mosses, lichens, and *Lycopodium* in mixed manuka *Nothofagus* forest a few hundred feet above Lake Rotoiti (Hammer 1968).

ND, WO / BR.

L. thori Hammer, 1968 — thin layer of moss on wet soil near brook in deep shadow, Kerikeri; moss and liverworts in native forest, Waitakere Range, mouldering leaves in small, shadowed cleft, Waitomo; mouldering *Nothofagus* leaves, Lake Rotoiti; moss on stone in brook rushing from Fox Glacier (Hammer 1968).

ND, AK, WO / BR, WD.

L. turki (Hammer, 1968) — moss and liverworts in cypress forest, Pauatahanui (Hammer 1968).

WN / —.

L. vanderhammeni Hammer, 1968 — mosses, ferns, and low plants carpeting ground near brook in deep, shadowed cleft with tall trees, and grass, moss, and dead leaves on slope of cleft, Kerikeri (Hammer 1968).

ND / —.

TK / —.

L. willmanni Hammer, 1968 (Figure 106) — moist *Polytrichum* and low plants on vertical slope near oozing water, Christchurch, thick, moist moss at foot of giant tree, and moss and dead leaves in native forest, Fox Glacier; dead leaves in *Nothofagus* forest. Milford Sound (Hammer 1968).

/ MC, WD, FD.

L. woodrungi Hammer, 1968 — thin layer of moss and small plants scraped from trunk of big tree in native forest. Puketi (Hammer 1968).

ND / —.

Remarks. The status of genus *Lanceoppia* is currently not very satisfactory; it contains an assemblage of species which may later have to be reassigned. In order to avoid any proliferation of new genera until more is known of the fauna, the species are here keyed together under a widened generic diagnosis. Those with an asterisk in the key may confidently be considered as belonging to genus *Lanceoppia* in the strict sense.

Genus Loboppia Balogh, 1983: 39

Type-species *Oppia covarrubiæsi* Hammer, 1968.

Oppid mites without costulae; rostrum entire but with 2 membranous lobes at its tip; sensilli lanceolate; cristae absent; notogaster with 10 pairs of setae, setae *ta* present; genital setae numbering 6 pairs, aggenital setae *ia* 1 pair, anal setae 2 pairs, anal setae 3 pairs; pori *iad* in apocoanal position.

L. covarrubiæsi (Hammer, 1968) (Figure 103) — moist penguin dung mixed with grass in penguin's nest, Dunedin (Hammer 1968). — / DN.

Genus Machella Hammer, 1961: 70

Type-species *Machella ventrisetosa* Hammer, 1961.

Oppid mites without costulae; rostrum entire; sensilli fusiform or capitate, with a long stalk; cristae present; epimeral setae long, directed medially; genital setae numbering 5 pairs, aggenital setae 1 pair, anal setae 2 pairs, anal setae 3 pairs; pori *iad* in adanal position.

01 Cristae developed as 2 diverging lines on each side of notogaster, encompassing setae *te*, *ti*, and *r*3

... (Fig. 84) ... *pyriformis*

— Cristae developed as a single line on each side of notogaster, hardly reaching setae *te* ... *ventrisetosa*
M. *pyriformis* Hammer, 1968 (Figure 84) — dead leaves in cleft with tall trees, Waitomo (Hammer 1968).

WO / —.

M. ventrisetosa Hammer, 1961 — mosses on slope above small brook in deep shadow, Kerikeri; moist liverworts and moss on slope, Lake Tarawera, Rotorua (Hammer 1966); also New Plymouth, Pauatahanui, Nelson (Hammer 1968).

ND, BP, TK, WN / NN.

Genus Membranoppia Hammer, 1968: 25

Type-species *Membranoppia krivoluzkyi* Hammer, 1968.

Oppiid mites with costulae; rostrum entire; sensilli capitate, with a narrow ribbon of membrane; cristae absent; notogaster with 9 pairs of setae, setae **ta** absent; genital setae numbering 6 pairs, aggenital setae 1 pair; anal setae 2 pairs, adanal setae 3 pairs; pori *iad* in adanal position.

01 Sensilli slender clubs, minutely pilose on distal border ... *karppineni*
— Sensilli not pilose ... 2

02(01) Transcostula present
— (Fig. 98) ... *krivoluzkyi*
— Transcostula at best faint ... *sitnikovae*

M. karppineni Hammer, 1968 — moist moss by roadside in *Nothofagus* forest, Upper Takaka (Hammer 1968).

— / NN.

M. krivoluzkyi Hammer, 1968 (Figure 98) — thick Leucobryum in *Nothofagus* forest, Lake Rotoiti; thick moss on dead branches in tree-fern forest, Milford Sound (Hammer 1968).

— / BR, FD.

M. sitnikovae Hammer, 1968 — moss on vertical slope grown with ferns, near Mirror Lake, Rotorua; moist to wet Selaginella in native forest, New Plymouth; dead leaves in native forest, Fox Glacier; wet moss in *Nothofagus* forest, Milford Sound (Hammer 1968).

BP, TK / WD, FD.

Genus Micropoppia Balogh, 1983: 25

Type-species *Damaeosome minus* Paoli, 1908.

Oppiid mites without costulae; rostrum entire; sensilli short, capitate; cristae inconspicuous; notogaster with 10 pairs of setae, setae **ta** present; genital setae numbering 5 pairs, aggenital setae 1 pair; anal setae 2 pairs, adanal setae 3 pairs; pori *iad* in adanal position.

01 Two ridges, and 1 pair of areoles, medial to interlamellar setae ... *minutissima*
— No ridges, but 2 pairs of areoles, medial to interlamellar setae ... *minus*

M. minus (Paoli, 1908 in the sense of Willmann, 1931) — moist moss on mouldering log in *Nothofagus* forest, Lake Rotoiti (Hammer 1968).

— / BR.

M. minutissima (Sellnick, 1950) (Figure 92) — restiad and fern peat soils, near Hamilton (Luxton 1982c, 1983a); Rukuhia and Kapiaki peat pasture soils, near Hamilton (Luxton 1982c, 1983b); moist liverworts and moss under trees on bank of Lake Tarawera, Rotorua (Hammer 1968); pasture soil, Nelson (Martin 1978); thin layer of moss on vertical roadside in shadow, Christchurch (Hammer 1968).

WO, BP / NN, MC.

Genus Nesoppia new genus

Type-species *Oppia tuxeni* Hammer, 1968.

Oppiid mites with distinct costulae and transcostula; rostrum entire; sensilli short, capitate; by a broad arch; rostrum tripartite; sensilli short, capitate; lamellar setae absent, interlamellar setae very long; notogaster with 8 pairs of setae, setae **ta** present; genital setae numbering 5 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; setae **ad3** preanal, **ad1** postanal; pori *iad* in apopanal position.

N. tuxeni (Hammer, 1968) (Figure 101) — thick, moist (?) Leucobryum in *Nothofagus* forest, Lake Rotoiti (Hammer 1968).

— / BR.

Genus Operculoppia Hammer, 1968: 22

Type-species *Operculoppia kunstii* Hammer, 1968.

Oppiid mites without costulae; rostrum entire; sensilli capitate; bothridia with opercula; cristae absent; notogaster with 10 pairs of setae, setae **ta** present; genital setae numbering 4 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; pori *iad* in apopanal position.

O. kunstii Hammer, 1968 (Figure 79) — liverworts and Leucobryum on log in native forest, Waitakere Range (Hammer 1968).

AK / —.
Genus *Oppiella* Jacot, 1937: 356
Type-species *Eremaeus novus* Oudemans, 1902.
Oppiid mites with short, convergent costulae; rostrum entire; sensilli fusiform; cristae present or absent; notogaster with 10 pairs of setae, setae 2a present; genital setae numbering 5 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; pori iad in adanal position.

01 Notogaster with conspicuous cristae ... *nova*
 — Notogaster without conspicuous cristae ... 2

02(01) Chitinous ridges both above and below interlamellar setae ... (Fig. 90) ... *dubia*
 — Chitinous ridges only below interlamellar setae ... *obsoleta*

O. dubia Hammer, 1962 (Figure 90) — moss and grass under *Eucalyptus* trees, grass, and *Hieracium* by roadside, and dead, moist *Selaginella* vegetation on forest soil, Kerikeri; moss and a little grass in native forest, Waitakere Range; thin moss and liverworts on slope behind hotel, Waitomo; moss and liverworts under trees on bank of Lake Tarawera, Rotorua; moss and grass on lawn under tall trees, New Plymouth (Hammer 1968).
ND, AK, BP, WN / NN, BR, WD, MC, FD.

O. nova (Oudemans, 1902) — restiad and fern peat soils, near Hamilton (Luxton 1982b, 1983a); Rukuhia and Kaitiaki peat pastures, near Hamilton (Luxton 1982c, 1983b). (?)Ubiquitous.

O. obsoleta (Paoli, 1908) — thin layer of moss and liverworts under trees on overgrown road, Kerikeri (Hammer 1968).
ND / —.

Remarks. *O. nova* has been distinguished by Hammer (1968) as being the commonest oribatid in New Zealand, found everywhere, but most abundant in thick, moist mosses.

Genus *Oxyoppia* Balogh & Mahunka, 1969: 269
Type-species *Oppia spinosa* Hammer, 1958.
Oppiid mites with converging costulae connected by a transcostula; rostrum entire; sensilli fusiform, ciliate; cristae represented by 2 chitinous lobes opposite bothridia; notogaster with 10 pairs of notogastral setae, setae 2a present; genital setae numbering 5 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; pori iad in apoanal position.

O. suramericana (Hammer, 1958) (Figure 82) — Kerikeri, Waitakere Range, Rotorua, Pauatahanui, Papu Springs, Lake Rotoiti, Christchurch, Hokitika, Fox Glacier. Milford Sound; most abundant at Papu Springs in soaking wet (?) *Leucobryum*, grass and watercress under manuka at edge of swamp (Hammer 1968).
ND, AK, BP, WN / NN, BR, WD, MC, FD.

Genus *Paroppia* Hammer, 1968: 19
Type-species *Paroppia lebruni* Hammer, 1968.
Oppiid mites without costulae; rostrum entire; sensilli lanceolate, long; cristae absent; notogaster with 9 pairs of setae, setae 2a absent; genital setae numbering 4 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; pori iad in adanal position; tibiae I each drawn out into a long process bearing a solenidion.

P. lebruni Hammer, 1968 (Figure 78) — moist moss on ground, and wet moss and liverworts on vertical slope above small brook, *Nothofagus* forest. Lake Rotoiti; dead leaves between logs in native forest, Fox Glacier, thick, moist moss on ground in *Nothofagus* forest. Milford Sound (Hammer 1968).
— / BR, WD, FD.

Genus *Pletzenoppia* Balogh, 1983: 36
Type-species *Oppia pletzenae* Kok, 1967.
Oppiid mites without costulae; rostrum entire; sensilli fusiform, unilaterally ciliate; cristae absent; notogaster with 9 or 10 pairs of setae, setae 2a present or absent; genital setae numbering 6 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; pori iad in adanal position; tibiae I each drawn out into a long process bearing a solenidion.

P. rafalskii (Hammer, 1968) (Figure 94) — thick, moist (?) *Leucobryum* in *Nothofagus* forest, Lake Rotoiti (Hammer 1968).
— / BR.

Genus *Polyoppia* Hammer, 1968: 9
Type-species *Polyoppia baloghi* Hammer, 1968.
Oppiid mites without costulae; rostrum entire; posterior margin of prodorsum with 2 pairs of condyles; sensilli setiform or slightly lanceolate; cristae absent; notogaster with 13 pairs of setae, setae 2a present; genital setae numbering 5 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; pori iad in apoanal position.

P. baloghi Hammer, 1968 (Figure 80) — dead, moist leaves in cypress forest soil, Pauatahanui (Hammer 1968).
WN / —.

Pravoppia new genus
Type-species *Oppia disjuncta* Wallwork, 1964.
Oppiid mites with well developed costulae and a disjunct transcostula; rostrum entire; integument...
of interlamellar region developed in a series of transverse ridges; sensilli capitate; cristae absent; notogaster with 10 pairs of setae, setae ta present; genital setae numbering 6 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; setae ad3 preanal, ad1 postanal; pori iad in apoanal position; aggenital setae midway between genital and anal plates, close to setae ad3; integument of epimeral region fenestrate or reticulate.

P. disjuncta (Wallwork, 1964) (Figure 100) — moss, Bee- man Hill, Campbell Island (Wallwork 1964a).

Genus Processoppia Balogh, 1983: 57
Type-species Oppia oudemansi Hammer, 1968.
Oppiid mites with horseshoe-shaped costulae and transcostula; rostrum entire; sensilli lanceolate; cristae absent; notogaster with 10 pairs of setae, setae ta present; genital setae numbering 4 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; pori iad in apoanal position; femora I and II each with a ventral protuberance bearing a seta.

P. oudemansi (Hammer, 1968) (Figure 72) — mouldering leaves on slope in native forest, New Plymouth (Hammer 1968).

Genus Ptiloppia Balogh, 1983: 28
Type-species Oppiella bulanovae Hammer, 1968.
Oppiid mites with short, complex costulae; rostrum tripartite; sensilli long, setiform, with long cilia; cristae reduced; notogaster with 10 pairs of setae, setae ta present; genital setae numbering 5 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; pori iad in adanal position.

P. bulanovae (Hammer, 1968) (Figure 88) — luxuriant Lecobryum (?) under manuka in thermal area, Rotornua (Hammer 1968).

Genus Quadroppia Jacot, 1939: 323
Type-species Notaspis quadricarinata, Michael, 1885.
Oppiid mites with trapeziform costulae and transcostula; rostrum entire; sensilli short, capitate; cristae strongly developed, extending posteriorly to half or two-thirds length of notogaster; notogaster with 10 pairs of setae, setae ta present; genital setae numbering 5 pairs; pori iad in adanal position.

01 Circumnotogastral ridge strong, originating solely from humeral cristae

--- (Fig. 85) --- circumita

Q. circumita (Hammer, 1961) (Figure 85) — moss and liverworts on overgrown road under trees, Kerikeri; thick moss, white clover, and grass by roadside, Milford Sound (Hammer 1968).

ND / FD.

ND, TK, WN / NN, BR.

Genus Ramusella Hammer, 1962: 50
Type-species Ramusella puertomontensis Hammer, 1962.
Oppiid mites without costulae; rostrum entire; sensilli pectinate; rostral setae densely pectinate in proximal half, the distal half slightly bent medially and smooth; cristae absent; notogaster with 9 pairs of setae, setae ta absent; genital setae numbering 5 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; pori iad in adanal position.

R. sengbuschi Hammer, 1968 (Figure 87) — moist moss and grass under Eucalyptus hedge, and moist moss and grass on lawn, Kerikeri (Hammer 1968).

ND / —.

Genus Setuloppia Balogh, 1983: 39
Type-species Oppia newelli Hammer, 1968.
Oppiid mites with short costulae formed, with the transcostula, into a horseshoe shape; rostrum entire; sensilli setiform, sparsely ciliate; cristae absent;
notogaster with 10 pairs of setae, setae ta present; genital setae numbering 6 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; pori iad in apogonal position.

$S. \text{newelli}$ (Hammer, 1968) (Figure 97) — moss and liverworts on soil, and moss on dead branches, native forest, Pauatahanui (Hammer 1968).

WN / —.

Genus $Solenoppia$ Hammer, 1968: 20

Type-species $Solenoppia \text{grandjeani}$ Hammer, 1968.

Oppiid mites with horseshoe-shaped costulae and transcostulae; interlamellar region with 2 small, chitinuous hooks; rostrum entire; sensilli fusiform, unilaterally ciliate; cristae absent; notogaster with 9 or 10 setae, setae ta present or absent; genital setae numbering 4 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; pori iad in apogonal position; solenidia of tarsi I and II, tibiae I-III, and genua III broad and short.

01 Length more than 200 μm ... $travel$

— Length less than 200 μm ... 2

02(01) Surface of prodorsum with a wrinkled appearance; seta te posterolateral to ti ... (Fig. 73) ... $grandjeani$

— Surface of prodorsum not wrinkled; setae te and ti at same level ... $taberlyi$

$S. \text{grandjeani}$ Hammer, 1968 (Figure 73) — liverworts and small ferns on log in native forest, Waitakere Range; moist liverworts on wet clay on vertical slope by roadside in forest, and moss, grass, and small plants at foot of tree fern in native forest, Pauatahanui (Hammer 1968).

AK, WN / —.

$S. \text{taberlyi}$ Hammer, 1968 — moss on slope above small brook shaded by tall trees, Kerikeri (Hammer 1968).

ND / —.

$S. \text{travel}$ Hammer, 1968 — moist to wet (?)$Leucobryum$ on slope, and wet liverworts and moss on vertical slope above small brook, Nothofagus forest, Lake Rototoi; thick, moist moss in native forest, Lake Matheson; luxuriant moss on dead branches in tree-fern forest, and wet moss on stone in Nothofagus forest, Milford Sound (Hammer 1968).

— / BR, WD, FD.

Genus $Tripiloppia$ Hammer, 1968: 10

Type-species $Tripiloppia \text{aokii}$ Hammer, 1968.

Oppiid mites with short, complex costulae; rostrum tripartite; sensilli pectinate; cristae inconspicuous or absent; notogaster with 10 pairs of setae, setae ta present; genital setae numbering 4 pairs, aggenital setae 3 pairs, anal setae 2 pairs, adanal setae 3 pairs; pori iad in adanal position.

01 Anterior border of notogaster with prominent teeth ... 2

— Anterior border of notogaster without projections ... 3

02(01) Anterior border of notogaster with 2 teeth; tip of each sensillus branch reflected ... $traegardhi$

— Anterior border of notogaster with 4 teeth; tips of sensillus branches not reflected ... (Fig. 70) ... $aokii$

03(01) Length more than 600 μm; costulae steeply inclined; lamellar setae set lateral to tip of costula ... $dalenii$

— Length less than 600 μm; costulae not steeply inclined; lamellar setae set otherwise ... 4

04(03) Lamellar setae on costulae; oblique ridges connecting costulae with bothridia; ‘S’-shaped ridges around interlamellar setae ... $forsslundi$

— Lamellar setae within inner apical edge of costulae; sculpturing of prodorsum not as above ... $tarraswahlbergi$

$T. \text{aokii}$ Hammer, 1968 (Figure 70) — thick, moist moss on ground in native forest, Puakiti; slightly moist moss under manuka. Waitakere Range: thick, slightly moist moss under manuka, thermal area, Rotorua; very thick, moist moss on ground, and wet moss and liverworts on vertical slope above brook, Nothofagus forest, Lake Rototoi; moist to wet moss or liverworts on thick tree trunk covered by mosses in native forest, Fox Glacier (Hammer 1968).

ND, AK, BP / BR, WD.

$T. \text{dalenii}$ Hammer, 1968 — mouldering leaves among dead tree trunks in native forest, and moss on a tree, Fox Glacier (Hammer 1968).

— / WD.

ND / —.

$T. \text{tarraswahlbergi}$ Hammer, 1968 — almost dry mosses under manuka, Pupu Springs (Hammer 1968).

— / NN.

$T. \text{traegardhi}$ Hammer, 1968 — moss on steep slope above brook in deep shadow, and moss on mouldering tree trunk, Kerikeri (Hammer 1968).

ND / —.

Genus $Trizetes$ Berlese, 1904: 26

Type-species $Trizetes \text{pyramidalis}$ Berlese, 1904.

Oppiid mites without costulae; prodorsum long, pointed; rostrum entire; sensilli pectinate; cristae absent; notogaster with 10 pairs of setae, setae ta present; genital setae numbering 5 pairs; epimeral
plates 3 and 4 conspicuously elongate; leg IV originating at a distance from leg III.

Recorded as genus only (Figure 81) from pasture on Taita hill soil, DSIR Soil Bureau Experimental Station, Lower Hutt (McMillan 1969).

Remarks. Genus “Oppia” has been recorded from Rukuhia peat pasture, near Hamilton (Luxton 1982d); *Histiopteris* leaf litter, pohutukawa leaf litter near landing, and wet pohutukawa leaf litter near top of forest, Ohauora, White Island (Wise 1970); pastures on Taita hill soil and Pomare silt loam, DSIR Soil Bureau Experimental Station, Lower Hutt (MacMillan 1969); and pasture on Akatarawa hill soil, Hutt Valley (Adams 1971). *Oppia* in the strict sense does not occur in New Zealand, however, and the precise generic identity of these records cannot be ascertained.

Family SUCTOBELBIDAE

Genus Suctobelba Paoli, 1908: 74

Type-species *Notaspis trigona* Michael, 1888.

Suctobelbid mites with several teeth on edges of rostrum and chitinous tubercles on prodorsum; lamellar setae originating near interlamellar setae.

01 Sensilli smooth ... 2
 — Sensilli pilose ... 5

02(01) Notogastral setae plumose ... *plumata* ... plumata
 — Notogastral setae smooth ... 3

03(02) Region of prodorsum lateral to bothridia set with small, pointed tubercles; lateral teeth of anterior edge of notogaster larger than middle pair
 — Not as above ... 4

04(03) Rostral teeth conspicuous, long, pointed, directed forwards ... *falcata* ... falcata
 — Rostral teeth inconspicuous, not all directed forwards ... *longicurva* ... longicurva

05(01) Rostrum projecting forwards like a nose; lateral teeth on anterior border of notogaster more robust than inner teeth
 — Rostrum not projecting forwards like a nose; teeth on anterior edge of notogaster subequal in size ... *subcornigera* ... subcornigera

S. falcata Forsslund, 1941 — liverworts and small ferns on log in native forest, and moss in drier manuka scrub, Waitakere Range; moist moss and small ferns under manuka, thermal area, Rotorua; thick moss, grass, and small plants in forest of tree ferns, Pauatahanui; thick moss in *Notofagus* forest, and moss and lichens in manuka scrub, Lake Rotoiti (Hammer 1966).

AK, BP, WN / BR.

ND, AK, WO, BP / WN, WD, OL, FD.

S. nasalis Forsslund, 1941 — moss, dead leaves, liverworts, *Selaginella*, and on the border of a swamp. Kerikeri, liverworts, moss, and dead leaves in tree fern forest, Waitomo; liverworts under manuka in thermal area, lawn at Forest Research Institute, and moist liverworts and moss on slope at Lake Tarawera, Rotorua; thick moss, white clover, and grass, Milford Sound (Hammer 1966).

ND, WO, BP / FD.

S. nondivisa Hammer, 1966 (Figure 69) — Kerikeri, Waitakere Range, Waitomo, Rotorua, New Plymouth, Pauatahanui, Pupu Springs, Queenstown, and Milford Sound; most numerous in moist moss and decaying leaves beneath manuka in thermal area, Rotorua, and slightly moist moss in native forest and under manuka, Waitakere Range (Hammer 1966).

ND, AK, WO, BP, TK, WN / NN, OL, FD.

S. plumata Hammer 1966 — slightly moist moss in manuka forest, Waitakere Range; slightly moist moss and dead leaves under manuka, thermal area, Rotorua; slightly moist moss in native forest, Lake Matheson (Hammer 1966).

AK, BP / WD.

S. subcornigera Forsslund, 1941 — moss, liverworts, and dead leaves, Kerikeri; also Lake Tarawera, Pupu Springs, Christchurch, Queenstown, and Milford Sound (Hammer 1966).

ND, BP / NN, MC, OL, FD.

Genus *Suctobelbila* Jacot, 1937: 241

Type-species *Suctobelbila punctillata* Jacot, 1937.

Suctobelbid mites with a medial tubercle on dorsosugal suture; notogaster tuberculate and bearing 10 pairs of setae; genital setae numbering 6 pairs, anal setae 2 pairs.

S. dentata (Hammer, 1961) (Figure 67) — liverworts, moss, and debris on ground, Waitakere Range (Hammer 1966).

AK / —.

Genus Zeasuctobelba Hammer, 1966: 55

Type-species *Zeasuctobelba quinquenodosa* Hammer, 1966.

Suctobelbid mites lacking rostral teeth; notogaster bearing 10 pairs of setae; genital setae numbering —
5 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; distal joints of palps extended into threads bifurcate at tips.

01 Notogaster with 2 tubercles anteromedially ... 2
— Anterior border of notogaster without tubercles ... 3

02(01) Lateral teeth on anterior edge of notogaster well developed and overlapping notogaster as a keel; notogastral setae overlapping base of setae immediately anterior to them; length less than 250 μm ... quinquenodosa
— Not as above ... trinodosa

03(01) Notogaster with a low, broad arch medially on anterior edge; sensilli club-shaped, rounded at tips ... arcuata
— Notogaster with no arch medially on anterior edge; sensilli lanceolate, the tips drawn out into long points ... (Fig. 68) ... nodosa

AK / —.

Z. nodosa Hammer, 1966 (Figure 68) — liverworts and moss on log in forest, Waitakere Range (Hammer 1966).
AK / —.

Z. quinquenodosa Hammer, 1966 — Nelson; wet sphagnum and thick moss near a spring in Nothofagus forest, Lake Rotowiti; moss and liverworts on ground and on trees in native forest, and thick, moist moss on ground in native forest, Lake Matheson; thick, moist moss on ground in native forest, and liverworts on decayed log under trees on seashore, Milford Sound (Hammer 1966).
— / NN, BR, WD, FD.

ND, BP / —.

Family TUPAREZETIDAE

Genus Tuparezetes Spain, 1969: 155
Type-species Tuparezetes christineae Spain, 1969. Tuparezetid mites with large, paired spines on propodosoma; sensilli spheroidal; notogaster covered with a deep, white wax layer and bearing 9 pairs of setae; genital setae numbering 6 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; tridactylous.

01 Hysterosoma somewhat truncate posteriorly; median claw shorter than the 2 laterals; prodorsal spines short, conical ... philodendrus
— Hysterosoma not truncate posteriorly; median tarsal claw longer than the 2 laterals; prodorsal spines long, curved, closely appressed to dorsum ... (Fig. 65) ... christineae

T. christineae Spain, 1969 (Figure 65) — foliage of Olearia colensoi on Hinerua Ridge, Waipawa Saddle, Mt Wharite, and Rangewha Ski Club Hut area, Ruahine Range; Arête Stream basin, Tararua Range; Magister Ridge, Mt Fox, Strachan Range; Pillans Pass and Thomson Ridge, Stewart Island (Spain 1969).
— / WN, WD / SL.

— / NN, MB.

Superfamily OTOCEPHEOIDAE

Family OTOCEPHEIDAE

Genus Clavazetes Hammer, 1966: 86
Type-species Clavazetes decorus Hammer, 1966. Otocepid mites with notogaster bearing 10 pairs of clavate setae; genital setae numbering 3 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; genital and anal fields widely separated; all tarsi with club-shaped setae; monodactylous.

C. decorus Hammer, 1966 (Figure 107) — luxuriant moss and liverworts on river bank in shadow under trees, Hokitika; dead leaves under tree ferns in Nothofagus forest, Milford Sound (Hammer 1966).
— / WD. FD.

Genus Neotocepheus Hammer, 1966: 68
Type-species Neotocepheus colliger Hammer, 1966. Otocepid mites with 2 medial and 2 lateral condyles at posterior border of propodosoma; anterior border of hysterosoma with lateral tooth on each side; notogaster with 12 pairs of setae; genital setae numbering 3 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; monodactylous.

N. colliger Hammer, 1966 (Figure 110) — moss and dead kauri leaves, Paketi (Hammer 1966).
ND / —.

Genus Plenotocepheus Hammer, 1966: 66
Type-species Plenotocepheus mollicoma Hammer, 1966.
Otoceheid mites with 2 condyles in middle of posterior border of propodosoma; anterior margin of hysterosoma with a large tooth on each side; notogaster with 14 pairs of setae; genital setae numbering 3 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; monodactylous.

01 Length less than 700 µm; notogaster with 2 condyles anteromedially; notogastral setae extraordinarily long

... delicatissimus

— Length more than 800 µm; notogaster without condyles anteromedially

... (Fig. 109) ... molicom

ND / —.

P. molicom Hammer, 1966 (Figure 109) — luxuriant moss and small ferns by brook in deep shadow, Kerikeri (Hammer 1966).

ND / —.

Genus Pseudotoceheus Balogh, 1960: 23
Type-species Pseudotoceheus pauliani Balogh, 1960.

Otoceheid mites with 10 pairs of simple notogastral setae, 3 pairs of genital setae, 1 pair of aggenital setae, 2 pairs of anal setae, 3 pairs of adanal setae; monodactylous.

01 Notogastral setae conspicuously long, e.g., h2 easily reaching base of h1 ... 2

— Not as above ... curtiseta

02(01) Interlamellar setae slightly pectinate; fissure iad preanal ... tenuiseta

— Not as above ... 3

03(02) Length more than 900 µm; dorsal notogastral setae arranged in 2 sub-parallel rows ... punctatus

— Length less than 800 µm; dorsal notogastral setae not arranged in 2 parallel rows ... (Fig. 108) ... foveolatus

ND / —.

P. foveolatus Hammer, 1966 (Figure 108) — dead leaves and moss near brook under tall trees, Kerikeri; moss and leaves on ground, Rotorua; almost dry moss under manuka, Pupu Springs (Hammer 1966).

ND, BP / NN.

P. punctatus Hammer, 1966 — dead leaves and moss on ground in Nothofagus forest, and liverworts on dead, rotten tree trunk, Milford Sound (Hammer 1966).

— / FD.

P. tenuiseta Hammer, 1966 — thick moss, small ferns, and dead leaves in native forest, Fox Glacier (Hammer 1966).

— / WD.

Superfamily POLYPTEROZETOIDEA
Family EUTEGAEIDAE

Genus Bornebuschia Hammer, 1966: 75
Type-species Bornebuschia peculiaris Hammer, 1966.

Eutegaeid mites with broad lamellar cuspis surrounding tongue-shaped central part of rostrum; pteromorphae broad, short, directed forwards; notogaster with 8 pairs of setae; genital setae numbering 6 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; chelicerae elongate; monodactylous.

B. peculiaris Hammer, 1966 (Figure 117) — dead leaves and moist moss in Nothofagus forest, Lake Rotoiti; dead leaves in native forest, Lake Matheson (Hammer 1966).

— / BR, WD.

Genus Compactozetes Hammer, 1966: 76
Type-species Compactozetes rotoruensis Hammer, 1966.

Eutegaeid mites with lamellae fused anteriorly; tutoria very long and broad; lateral border of hysterosoma behind pteromorphae transparent; genital setae numbering 6 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; monodactylous.

01 Length less than 500 µm; tips of sensilli expanded ... (Fig. 118) ... rotoruensis

— Length about 1000 µm; sensilli rod-shaped ... niger

C. niger Hammer, 1966 — moss and dead leaves on ground, Puketi; moist to wet moss on dead tree trunk, and moss and dead pine needles, Kerikeri; moss and a little grass in native forest, Waitakere Range; moist dead leaves, ferns, and debris, New Plymouth; moist dead leaves in Nothofagus forest, Lake Rotoiti; dead leaves and ferns in native forest, Fox Glacier; liverworts and dead Nothofagus leaves, Milford Sound (Hammer 1966).

ND, AK, TK / BR, WD, FD.

C. rotoruensis Hammer, 1966 (Figure 118) — slightly moist moss and fern on slope, Mirror Lake, and grass and Scirpus at soda spring, Lake Rotoehu, Rotorua (Hammer 1966).

BP / —.
Genus *Eutegaeus* Berlese, 1917: 62
Type-species *Oribata bostocki* Michael, 1908.

Eutegaeid mites with narrow, forward-projecting pteromorphae; lamellae large, almost horizontal, without an incurved apical tooth; notogaster with 9 pairs of setae; genital setae numbering 5 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; monodactylous.

01 Interlamellar setae not reaching translamella ... 2
 — Interlamellar setae reaching translamella ... 5

02(01) Setae emerging from posterior tubercles of hysterosoma shorter than dorsal notogastral setae ... 3
 — Setae emerging from posterior tubercles of hysterosoma at least as long as dorsal notogastral setae ... 4

03(02) Lamellar setae, interlamellar setae, and 5 pairs of dorsal notogastral setae each with a thin membrane on outer edges ... *membraniger*
 — Setae without membranes ... *bostocki*

04(02) Posterodorsal notogastral setae projecting only slightly beyond notogastral rim; posterior tubercles of hysterosoma touching ... *radiatus*
 — Posterodorsal notogastral setae projecting beyond notogastral rim for half their length; posterior tubercles of hysterosoma separate (Fig. 115) ... *stylesi*

05(01) Dorsal notogastral setae pennate, arranged in a circle ... *pinnatus*
 — Dorsal notogastral setae only slightly serrate, not arranged in a circle ... *curviseta*

E. bostocki (Michael, 1908) — Feilding (Michael 1908); semi-fossilised peat deposits, Campbell Island (Wallwork 1966).
 WI / — / Campbell I.

E. curviseta Hammer, 1966 — slightly moist moss and dead leaves, thermal area, Rotorua; moss and dead leaves in native forest, Fox Glacier; thick, moist moss in native forest, Lake Matheson; dead leaves in *Nothofagus* forest, Milford Sound (Hammer 1966).
 BP / WD, FD.

E. membraniger Hammer, 1966 — dead leaves in native forest, Fox Glacier; dead leaves, Lake Matheson; dead leaves in *Nothofagus* forest, Milford Sound (Hammer 1966).
 — / WD, FD.

 BP / —.

 AK / —.

E. stylesi Hammer, 1966 (Figure 115) — dead leaves of *Nothofagus*, Waipahiri Stream, Lake Taupo (Hammer 1966).
 TO / —.

Remarks. A further, unidentified, species in semi-fossilised form has been recorded by Wallwork (1966) from peat deposits at Tucker Cove, Campbell Island.

Genus *Neseutegaeus* Woolley, 1965: 384
Type-species *Neseutegaeus spinatus* Woolley, 1965.

Eutegaeid mites with large lamellae terminating in an incurved tooth; notogaster with 8 pairs of setae; genital setae numbering 5 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; monodactylous.

01 Dorsal notogastral setae all of the same type ... 2
 — Dorsal notogastral setae heterogeneous ... 4

02(01) Dorsal notogastral setae distended proximally, somewhat barbed (Fig. 116) ... *spinatus*
 — Dorsal notogastral setae smooth ... 3

03(02) Dorsal notogastral setae narrow, arranged in a smooth, ‘U’-shaped curve; no clear division between prodorsum and notogaster ... *consimilis*
 — Dorsal notogastral setae distended, arranged otherwise; a conspicuous division between prodorsum and notogaster ... *distentus*

04(01) Three anterior pairs of dorsal notogastral setae sickle-shaped, 2 posterior pairs shaped like florets; space between lamellae narrow ... *angustus*
 — Two anterior pairs of dorsal notogastral setae sickle-shaped; 3 posterior pairs clavate, smooth; space between lamellae broad ... *latus*

N. angustus Hammer, 1966 — dead leaves, Puketi; grass in thermal area, Rotorua; grass and low vegetation at roadside in mixed *Nothofagus* forest, Fox Glacier (Hammer 1966).
 ND, BP / WD.
— / BR.

N. distentus Hammer, 1966 — dead, humid leaves, Puketi; thick moss and dead leaves in native forest, Lake Matheson; moss and dead leaves in Nothofagus forest, Milford Sound (Hammer 1966).
ND / WD, FD.

ND / —.

N. spinatus Woolley, 1965 (Figure 116) — McGraths Creek, Arthurs Pass; Alex Knob, Waiho; Lake Ianthe (Woolley 1965); thick moss and dead leaves on dead tree trunks in humid native forest, Fox Glacier; wet moss in Nothofagus forest, Milford Sound (Hammer 1966).
— / NC, WD, FD.

Genus Nodocepheus Hammer, 1958: 64
Type-species Nodocepheus dentatus Hammer, 1958.
Eutegaeid mites with a short, forward-directed humeral projection, notched anteriorly; notogastral setae numbering 6-8 pairs; genital setae numbering 4 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; monodactylous.

N. dentatus Hammer, 1958 (Figure 113) — mosses and liverworts, and dripping wet moss in oozing water, Kerikeri; also Waitakere Range, Rotorua, Pauatahanui, Upper Takaka, Lake Rotoroa, Fox Glacier, Queenstown, and Milford Sound (Hammer 1966).
ND, AK, BP, WN / NN, BR, WD, OL, FD.

REMARKS. The lamellar setae of the New Zealand specimens are barbate, and Hammer (1966) designated the subspecies barbatus on this criterion.

Genus Pterozetes Hammer, 1966: 78
Type-species Pterozetes novazealandicus Hammer, 1966.
Eutegaeid mites with a very long, anteriorly directed pteromorph projection; lamellae broad and horizontal, fused anteriorly; genital setae numbering 4 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs, anal setae possibly absent; monodactylous.

P. novazealandicus Hammer, 1966 (Figure 114) — leaves in Rotoehu Forest, Rotorua (Hammer 1966).
BP / —.

REMARKS. P. novazealandicus is the name given in Hammer’s (1966) text, but the name P. memorabilis is given for this species in her figure legends. The latter name, which also appears in Spain & Luxton’s (1971) catalogue, must be treated as a junior synonym.

Family TUMEROZETIDAE

Genus Topalia Balogh & Csiszar, 1963: 477
Type-species Topalia problematica Balogh & Csiszar, 1963.
Tumerozetid mites with wide lamellae covering most of prodorsum; lamellar and interlamellar setae very small; notogaster covered with cerotegument, with setae absent, minute, or few in number; genital setae numbering 4 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 2 pairs; monodactylous.

01 Lamellar setae on inner edge of cuspid; ridges on notogaster converging anteriorly and diverging posteriorly
— / granulata

02(01) Sensilli with heads disc-shaped, stalks hardly emerging from bothridia; lamellar cuspid one-third as long as lamellae; longitudinal ridges on notogaster short, subparallel
— / clavata

— Sensilli without disc-shaped heads, stalks emerging from bothridia; lamellar cuspid one-quarter as long as lamellae; longitudinal ridges on notogaster long, divergent
— (Fig. 112) velata

T. clavata Hammer, 1966 — thick, wet moss on ground, Puketi; wet Selaginella and moss on tree trunk, New Plymouth; moss on dead tree trunk in native forest, Fox Glacier (Hammer 1966).
ND, TC / WD.

— / WD.

T. velata Hammer, 1966 (Figure 112) — moist to wet moss on ground under tall vegetation, Kerikeri; liverworts on dead tree trunk in native forest, Waitakere Range (Hammer 1966).
ND, AK / —.

Genus Tumerozetes Hammer, 1966: 81
Type-species Tumerozetes bifurcatus Hammer, 1966.
Tumerozetid mites with propodosomal fields characteristically swollen; lateral sides of lamellae with 2 medially concave plates fused anteriorly; longitudinal ridges on notogaster more or less well developed, overlapping dorsosejugal suture; pteromorphae short, projecting forwards; notogaster with
10 pairs of setae around rim; genital setae numbering 6 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 2 pairs; monodactylous.

01 Central longitudinal ridges overlapping border of prodorsum and notogaster parallel, closely adjacent ... 2
 — Central ridges far apart ... 3
02(01) Medial borders of lamellar plates strongly chitinised ... parallelus
 — Medial borders of lamellar plates indistinct ... indistinctus
03(01) Lamellar plates curved and concave posteromedially; anterior edge of central ridges entire, strong, curving anteriorly to lamellar plates
 — Not as above ... (Fig. 111) ... circularis
 04(03) Interlamellar setae and setae of notogastral dorsum bifurcate ... bifurcatus
 — Setae not bifurcate ... pumilis

T. bifurcatus Hammer, 1966 — liverworts and moss on dead tree trunk in native forest, Waitakere Range; thick, luxuriant moss on tree trunk in native forest, Fox Glacier; thick moss on dead branches in tree-fern forest, Milford Sound (Hammer 1966).
 AK / WD, FD.

T. circularis Hammer, 1966 (Figure 111) — thick, moist moss in native forest, Pauatahanui; moist moss on steep slope at 2000 feet, Port Hills, Christchurch (Hammer 1966).
 WN / MC.

T. indistinctus Hammer, 1966 — thick moss and liverworts on tree trunk, Waitakere Range; thick, luxuriant moss on tree trunk in native forest, Fox Glacier; thick moss on dead branches in tree-fern forest, Milford Sound (Hammer 1966).
 — / WD.

T. parallelus Hammer, 1966 — moist to wet, thick moss on rotten branch in Nothofagus forest, Milford Sound (Hammer 1966).
 — / FD.

 AK / —.

Cohort CIRCUMDEHISCENTIAE (Poronoticae)
Superfamily CERATOZETOIDEA
AUSTRACHIPTERIIDAE new family

Ceratozetoid mites with lamellae and cusps well developed, broad, covering most of prodorsum; translamella narrow, occasionally faint; lamellar setae inserted on ventral side of cuspis; anterolateral border of immobile pteromorphace reaching as far forward as anterior border of notogaster; notogastral setae numbering 10 pairs, sacculi 3 or 4 pairs, genital setae 6 pairs, anal setae 2 pairs; number of claws variable.

Genus Austrachipteria Balogh & Mahunka, 1966: 599
Type-species Austrachipteria lamellata Balogh & Mahunka, 1966.

Australcipteriid mites with large lamellae covering greater part of prodorsum; pteromorphae immobile; notogaster lacking areae porosae but with 3 or 4 pairs of sacculi and 10 pairs of setae; genital setae numbering 6 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 2 pairs; number of claws variable.

01 Length less than 500 µm; tarsi heterodactylous ... lobatus
 — Length 500–700 µm ... 2
 — Length more than 800 µm ... 5
02(01) Monodactylous ... 3
 — Tridactylous ... 4
03(02) Cuspis with 1 tooth ... bidentatus
 — Cuspis with 2 teeth ... quadridentatus
04(03) Lamellae meeting at midpoint ... furcatus
 — Lamellae not meeting at midpoint ... macrodentatus
05(01) With a conspicuous horizontal translamella ... giganteus
 — Without a conspicuous horizontal translamella ... 6
06(05) Teeth of lamellar cuspis sharp, diverging ... maximus
 — Teeth of lamellar cuspis not diverging; medial tooth broad, rounded ... (Fig. 121) ... grandis

A. bidentatus (Hammer, 1967) — Puketi, Waitakere Range, Rotorua, New Plymouth, Pauatahanui, and Lake Matheson; found in huge numbers at Rotorua in low, moist mosses and in dead leaves on ground in thermal area (Hammer 1967).
 ND, AK, BP, TK, WN / WD.

A. furcatus (Hammer, 1967) — moist grass, moss, and dead leaves in native forest, Waitakere Range; thick moss in native forest, and dead leaves in shadowed cleft at roadside, Waitomo; dead leaves in native forest, New Plymouth (Hammer 1967).
 AK, WO, TK / —.

A. giganteus (Hammer, 1967) — dead leaves at Waipahiti Stream, north-east of Invercargill (Hammer 1967).
 — / St.
A. grandis (Hammer, 1967) (Figure 121) — thin moss and lichens on trees and dead branches, and luxuriant moss on rimu tree, Puketi; cleft with water, Kerikeri Falls; dead leaves, Waitomo; dry moss on ground and in dead leaves, thermal area, Rotorua; lawns at Forest Research Institute, Whakarewarewa; dead leaves, and in moss on tree in native forest, New Plymouth; thick, moist moss on log in *Nothofagus* forest, Lake Rotoiti; dead leaves in native forest, Lake Matheson; moist moss on log and dead leaves in *Nothofagus* forest, Milford Sound (Hammer 1967); fern peat soils, near Hamilton (Luxton 1983a).

ND, WO, BP, TK / BR, WD, FD.

A. lobatus (Hammer, 1967) — thick moss in native forest, Lake Matheson (Hammer 1967).

— / WD.

BP-TO / —.

— / NC-WD.

A. quadridentatus (Hammer, 1967) — slightly moist, dead leaves in *Nothofagus* forest, Lake Rotoiti; dense mosses, small ferns, and dead leaves in native forest, and drier vegetation of grass and low plants outside forest, Fox Glacier (Hammer 1967).

— / BR, WD.

Genus Ceratozetes Berlese, 1908: 4

Type-species *Oribata gracilis* Michael, 1884.

Ceratozetid mites with 10 or 11 pairs of notogastral setae and 4 pairs of areae porosae; genital setae numbering 6 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; monodactylous or tridactylous.

01 Length more than 500 µm ... **gracilis**

— Length less than 400 µm ... 2

02(01) Interlamellar setae reaching beyond rostrum ... (Fig. 133) ... **bicornis**

— Interlamellar setae not reaching beyond rostrum ... 3

03(02) Anterior edge of notogaster with a considerable forward curve between interlamellar setae; rostrum rounded ... **hamobatoides**

— Anterior edge of notogaster without a considerable curve between interlamellar setae; rostrum sharply pointed ... **mediocris**

C. bicornis Hammer, 1967 (Figure 133) — fern peat soils, near Hamilton (Luxton 1983a); wet moss on stone in small, shadowed pond with goldfish. Forest Research Institute, Whakarewarewa; wet, thick moss, *Mimulus*, low *Juncus*, and grass near a spring. Lake Moke, Queenstown (Hammer 1967).

WO, BP, TK / OL.

C. gracilis (Michael, 1884) — moss on ground near small stream in deep cleft with tall trees, in mosses on rotten tree trunk, in dead leaves, and in dead fir needles, moss, and liverworts at roadside in shadow. Kerikeri; moss and grass under bushes in garden, Waitakere Range; moist liverworts and moss on slope. Lake Tarawera; moss and grass on lawn in park, New Plymouth (Hammer 1967).

ND, AK, BP, TK / —.

C. hamobatoides Hammer, 1967 — wet, low-growing *Scirpus*. Lake Matheson; wet liverworts and moss in ditch along road, Fox Glacier (Hammer 1967).

— / WD.

C. mediocris Berlese, 1908 — moist moss under bushes on lawn, and moist grass and *Hieracium* at roadside, Kerikeri (Hammer 1967).

ND / —.

Genus Edwardzetes Berlese, 1914: 85

Type-species *Oribata edwardsi* Nicolet, 1855.

Ceratozetid mites with 10 pairs of notogastral setae and 4 pairs of areae porosae; genital setae numbering 6 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; tridactylous.

E. novazealandicus Hammer, 1967 (Figure 132) — Kerikeri, Waitomo, Rotorua, New Plymouth, Pauatahanui, Lake Rotoiti, Hokitika, Fox Glacier, and Milford Sound; usually in moist mosses, and especially abundant in thick moss under trees on riverbank at Hokitika (Hammer 1967).

ND, WO, BP, TK, WN / BR, WD, FD.

REMARKS. The records of *E. andicola* and *E. dentifer* for New Zealand in Spain & Luxton (1971) are erroneous.

Genus Macrogena Wallwork, 1966: 872

Type-species *Macrogena monodactyla* Wallwork, 1966.

Ceratozetid mites with edge of anterior notogastral tectum behind anterior border of pteromorphae; notogaster with 10 pairs of setae and 4 pairs of small areae porosae; genital setae numbering 5 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs, monodactylous.

01 Length more than 300 µm; heads of sensilli smooth; outer teeth of lamellar cusps longer than inner ones ... **monodactyla**

— Length less than 300 µm; heads of sensilli set with small bristles; teeth of lamellar cusps subequal in length ... 2

— / WD.
02(01) Interlamellar setae projecting beyond rostrum ... (Fig. 129) ... **rudentiger**
— Interlamellar setae not projecting beyond rostrum ... **crassa**

M. crassa Hammer, 1967 — moist liverworts and mosses on tree trunk in native forest, Waitakere Range; almost dry mosses under manuka near spring, Papu Springs; moist moss on rotten log, moss on ground, and moist to wet moss near a spring, *Nothofagus* forest, Lake Rotoiti; luxuriant moss at foot of huge tree covered by mosses, and liverworts and mosses on tree trunk in native forest, Fox Glacier; dripping wet moss on vertical slope, Queenstown; moss from dead branches of tree fern, and moss and liverworts on rotten branches in *Nothofagus* forest, Milford Sound (Hammer 1967).

AK / NN, BR, WD, OL, FD.

— / — / Campbell I.

M. rudentiger Hammer, 1967 (Figure 129) — thick, moist to wet mosses on ground in dense native forest, and luxuriant moss on rimu trunk, Puketi; moist moss, liverworts, and dead leaves in native forest, Waitakere Range (Hammer 1967).

ND, AK / —.
Genus alone recorded from restiad and fern peat soils, near Hamilton (Luxton 1982c, 1983a).

WO / —.

Genus Magellozetes Hammer, 1962: 65
Type-species *Magellozetes processus* Hammer, 1962.

Ceratozetid mites with a broad, tripartite rostrum; notogaster with 10 pairs of setae and 4 pairs of areae porosae; genital setae numbering 6 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; tridactylous.

M. clathratus Hammer, 1967 (Figure 131) — dead leaves in *Nothofagus* forest, and luxuriant moist moss on sandy soil, near Bowen Falls, Milford Sound (Hammer 1967).

— / FD.
Genus alone recorded from restiad and fern peat soils, near Hamilton (Luxton 1982c, 1983a).

WO / —.

Genus Parafurcobates Hammer, 1967: 15
Type-species *Parafurcobates cuspidatus* Hammer, 1967.

Ceratozetid mites lacking a tectum on anterior edge of notogaster; notogaster with 10 pairs of setae and 4 pairs of areae porosae; genital setae numbering 6 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; sejugal apodemes not forming a transverse ridge; immediately anterior to genital field is a curved ridge ending at discidium; genua I and II each with a distal tooth; tridactylous.

P. cuspidatus Hammer, 1967 (Figure 134) — decayed leaves, moist to wet *Leucobryum* near a spring, and moss on ground, *Nothofagus* forest, Lake Rotoiti; dead leaves in native forest, Lake Matheson; moist moss on ground in *Nothofagus* forest, Milford Sound (Hammer 1967).

— / BR, WD, FF.

Genus Tutorozetes Hammer, 1967: 19
Type-species *Tutorozetes termophilus* Hammer, 1967.

Ceratozetid mites with tectum present on anterior edge of notogaster and with very large tutoria; notogaster with 10 pairs of setae and 4 pairs of areae porosae; genital setae numbering 6 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; monodactylous.

T. termophilus Hammer, 1967 (Figure 130) — moss in a dry, sun-baked locality with manuka, thermal area, Rotoura (Hammer 1967).

BP / —.

Family CHAMOBATIDAE

Genus Pedunculozetes Hammer, 1962: 68
Type-species *Pedunculozetes andinus* Hammer, 1962.

Chamobatid mites with anterior edge of notogaster projecting further forward than anterior edge of pteromorphae; stalks of sensilli extremely long; notogaster with 10 pairs of setae and 4 pairs of areae porosae; genital setae numbering 6 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; monodactylous.

ND, AK, WO, BP, TK, WN / NN, WD, OL, FD.

P. minutus Hammer, 1967 (Figure 120) — almost dry mosses under manuka, Papu Springs (Hammer 1967).

— / NN.

REMARKS. Hammer (1967) records *P. andinus* as being one of the commonest oribatid species in New Zealand.
Family MYCOBATIDAE

Genus Antarctozetes Balogh, 1961: 288
Type-species Orbata crozetensis Richters, 1908.

Mycobatid mites with a characteristic ring partly surrounding rostrum; notogastral setae (7, 15) reduced to alveoli; notogastr with 4 pairs of areae porosae; genital setae numbering 5 or 6 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 2 pairs; tridactylous.

01 Lamellar setae short, not reaching tip of rostrum ... luteus
— Lamellar setae at least reaching tip of rostrum ... 2

02(01) Interlamellar setae not reaching translamella ... intermedius
— Interlamellar setae projecting beyond translamella ... (Fig. 128) ... longicaulis

A. intermedius (Hammer, 1967) — in a crevice and in wet moss on stone in river, and moss and lichens on tree about 1 m from stream, Kerikeri, on path at freezing works, and on water pipe, Maerewa; moss on tree trunk, Waitomo; wet moss on stone in pond with goldfish, Whakariwarewa, moss on ground in Nothofagus forest, Lake Rototoi; moist moss and low plants on slope with oozing water, Christchurch; thick liverworts and dead leaves on ground in native forest, Fox Glacier (Hammer 1967); foliage of Olearia colensoi (precise localities not known) (Spain & Harrison 1968).

ND, WO, WP / BR, WD, MC.

B. nudus Hammer, 1967 (Figure 127) — green foliage of low bush vegetation in redwood forest. Whakarewarewa; green foliage in Pseudotsuga forest (Kaiangaroa), Rotorua; green foliage, Anzac Park, Palmerston North; green foliage, 'Freelands', Himatangi; green foliage in State Forest, Tapu (Hammer 1967).

BP, WI, WN / SL.

— / NC-WD.

Genus alone recorded from restiad and fern peat soils, near Hamilton (Luxton 1982c, 1983a).

WO / —.

Genus Cryptobothria Wallwork, 1963: 757
Type-species Cryptobothria monodactyla Wallwork, 1963.

Mycobatid mites with anterior notogastral tectum covering bothridia and sensilli; notogaster with 10 pairs of setae and 4 pairs of areae porosae; genital setae numbering 5 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; monodactylous.

C. monodactyla Wallwork, 1963 (Figure 124) — litter of Cotobothrus mucoides, Stilbocarpa, and Pleurophyllum, and herbfield plants at Douglas Point, Plateau, and Garden Cove, Macquarie Island (Wallwork 1963, Watson 1967).

— / — / Macquarie I.

Genus Mycozetes Spain, 1968: 516
Type-species Mycozetes oleariae Spain, 1968.

Mycobatid mites with a tripartite rostrum; notogaster with 9 pairs of setae and 4 pairs of areae porosae; genital setae numbering 5 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; monodactylous.

M. oleariae Spain, 1968 (Figure 123) — foliage of Olearia colensoi at Mt Manuoha and Mt Whakataka, Hulatau Range; Waipawa Saddle, Rangiwhia Ski Club Hut area, and Mt Wharite, Ruahine Range, Mt Fox and Magister Ridge (Spain 1968, Spain & Harrison 1968).

GB, RI / WD.

Genus Neomycobates Wallwork, 1963: 760
Type-species Neomycobates tridentatus Wallwork, 1963.

Mycobatid mites with anterior notogastral tectum covering bothridia and much of sensilli; notogaster
with 10 pairs of setae and 4 pairs of areae porosae; genital setae numbering 6 pairs; aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; tridactylous.

N. tridentatus Wallwork, 1963 (Figure 126) — *Poa foliosa* leaves and green alga on coastal rocks at Hasselborough Bay, Tent Hill, and Garden Cove, Macquarie Island (Wallwork 1963, Watson 1967).

— / — / Macquarie I.

Genus Punctoribates Berlese, 1908: 6

Type-species *Oribates punctum* Koch, 1839.

Mycobatid mites with anterior notogastral tectum projecting forward into interlamellar region; notogastral setae (?10) reduced to alveoli; notogaster with 4 pairs of areae porosae; genital setae numbering 6 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; tridactylous.

01 Anterior edge of notogaster produced into a horned process and extending beyond lamellar tips

... (Fig. 9, 125) ... manzanoensis

— Anterior edge of notogaster not as above ... (Fig. 8) ... punctum

P. manzanoensis Hammer, 1958 (Figures 9 and 125) — wet moss on stone in stream, and moist to wet moss on edge of swamp, Kerikeri (Hammer 1967).

ND / —.

P. punctum (Koch, 1839) (Figure 8) — moss on lawn, and moss and grass at roadside, Kerikeri; moss and grass under bushes in garden, Waitakere Range (Hammer 1967); pasture on Taita hill soil, DSIR Soil Bureau Experimental Station, Lower Hutt (McMillan 1969); pasture on Akatarawa hill soil, Hutt Valley (Adams 1971); moss and grass on lawn, Nelson (Hammer 1967).

ND, AK, WN / NN.

Genus alone recorded from Rukuhia and Kaipaki peat pastures, near Hamilton (Luxton 1982d, 1983b).

WO / —.

ONYCHOBATIDAE new family

Ceratozetoid mites with a tectum on anterior edge of notogaster; translamella represented by a chitinous scale; pteromorphae not hinged, immobile; notogaster with 10 pairs of setae and 1 pair of areae porosae; heterodactylous (tarsi I-III monodactylous, IV bidactylous); genital setae numbering 6 pairs, anal setae 2 pairs, adanal setae 3 pairs; tridactylous.

O. nidicola Hammer, 1967 (Figure 122) — nest of Gerygone igata, Arthurs Pass (Hammer 1967).

— / NC-WD.

RAMSAYELLIDAE new family

Ceratozetoid mites with no tectum on anterior edge of notogaster; translamella an undulating line; pteromorphae hinged; notogaster lacking areae porosae and sacculi; tridactylous; notogaster with 13 pairs of setae; genital setae numbering 6 pairs; anal setae numbering 2 pairs.

Type-genus *Ramsayellus* Balogh, 1972.

Genus Ramsayellus Balogh, 1972: 101

Type-species *Zealandobates grandis* Hammer, 1967.

Ramsayellid mites with no tectum on anterior edge of notogaster; translamella an undulating line; notogaster with 13 pairs of setae but lacking areae porosae and sacculi; genital setae numbering 6 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; tridactylous.

R. grandis (Hammer, 1967) (Figure 119) — Puketi (Hammer 1968); moist grass and moss on ground near small stream in deep cleft with tall trees, Kerikeri; green foliage, 'Treelands', Himatangi; branches, Balmoral, Christchurch (Hammer 1967).

ND, WN / MC.

REMARKS. By directive of the International Commission on Zoological Nomenclature, genus *Ramsayellus* is ascribed to Balogh (1972), who first published a generic diagnosis under this new name. Hammer (1967) described *R. grandis*, although the name is ascribed to Ramsay in her paper.

Superfamily GALUMNOIDEA

Family GALUMNIDAE

Genus Acrogalumna Grandjean, 1956: 135

Type-species *Oribates longiplumus* Berlese, 1904.

Galumnid mites with a single chitinous line on each side of prodorsum; notogastral setae absent; notogaster without a median pore (females) or with several in a group (males); tridactylous.

A. longiplumus (Berlese, 1904) (Figure 143) — thin layer of lichens and moss on rotten branch on ground, moss and grass on lawn, and moist to wet moss in bog, Kerikeri; moss and Medicago by roadside, Waitemata; thin layer
of moss on slope at town reservoir. Nelson (Hammer 1968).

Genus **Allogalumna** Grandjean, 1936: 105
Type-species **Galumna alamellae** Jacot, 1935.
Galumnid mites with a single chitinous line on each side of prodorsum; notogastral setae absent; notogastr with 1 median pore; tridactylyous.

A. novazealandica Hammer, 1968 (Figure 139) — mouldering leaves under trees in cleft by roadside, Waitomo (Hammer 1968).

Genus **Galumna** von Heyden, 1826: 612
Type-species **Notaspis alatus** Hermann, 1804.
Galumnid mites with 2 chitinous lines on each side of prodorsum; lamellar setae originating between each pair of lines.

01 Notogaster set with tubercles; lamellar setae extremely long (overtopping rostrum), flagellate
 — Notogaster smooth; lamellar setae not overtopping rostrum ... 2
02(01) Length more than 1000 µm; lamellar setae smooth; pteromorphae with an oblique fissure ... *microfissum*
 — Length less than 700 µm; lamellar setae pilose; pteromorphae without a fissure ... *rugosa*

G. *microfissum* Hammer, 1968 — thin layer of lichens and moss on dead branch, and moss on ground, Kerikeri; forest litter, Waiuku; moist mosses and small ferns on slope under manuka, thermal area, Rotorua; mouldering leaves under oak trees, New Plymouth; dead, mouldering *Nothofagus* leaves, Lake Rotoiti; thick moss, grass, and white clover by roadside, Milford Sound (Hammer 1968).

ND, AK, BP, TK / BR, WD.

G. *rugosa* Hammer, 1968 — thick carpet of mosses and low ferns on wet soil near brook in deep cleft with tall vegetation, luxuriant moss on ground, and lichens and moss on dead branches, Kerikeri; moss, liverworts, and dead leaves in native forest, and moss in drier part of forest under manuka, Waitakere Range; thin, almost dry moss on ground, moist moss and small plants, and under manuka, thermal area, Rotorua (Hammer 1968).

ND, AK, BP / —.

P. *reniformis* Hammer, 1968 — thin moss on ground under manuka, thermal area, Rotorua (Hammer 1968).

BP / —.

P. *silvestris* Hammer, 1968 (Figure 138) — thick moss at foot of huge tree, and moss and dead leaves, native forest, Fox Glacier (Hammer 1968).

— / WD.

Genus alone recorded from fern peat soils, near Hamilton (Luxtton 1983a).

WO / —.

Family PARAKALUMMIDAE

Genus **Neoribates** Berlese, 1914: 128
Type-species *Oribates roubali* Berlese, 1910.
Parakalummid mites with true lamellae; notogaster with sacculi.

N. barbatus Hammer, 1968 (Figure 136) — moss, liverworts, and mouldering leaves, Waitomo; thick *Sphagnum*, wet moss, and liverworts on vertical slope above small brook, *Nothofagus* forest, Lake Rotoiti; thick moss in native forest, Lake Matheson; liverworts on rotten log under trees, Milford Sound (Hammer 1968).

WO / BR, WD, FD.
Genus Porokalumma Wallwork, 1966: 18
Type-species *Sandenia rotunda* Wallwork, 1963.

Parakalummid mites with 4 pairs of areae porosae on notogaster; pteromorphae indented; anterior-most pair of adanal setae located posterolateral to adanal fissure.

P. rotunda (Wallwork, 1963) (Figure 135) — *Puccinellia macquariensis*, *Colobanthus musoides*, *Poa hamiltoni*, algae, rockhopper penguin nest material, and *Stilbocarpa* litter at Nuggets Point, Aerial Cove, Garden Cove, North Head, Buckles Bay, Wireless Hill, and Caroline Valley, Macquarie Island (Wallwork 1963, Watson 1967).

Superfamily MICROZETOIDEA

Family MICROZETIDAE

Genus Cuspitegula Hammer, 1966: 94
Type-species *Cuspitegula stellifer* Hammer, 1966.

Microzetid mites with lamellae covering whole surface of prodorsum; notogaster with (7) pairs of setae; genital setae numbering 6 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; monodactylous.

C. stellifer Hammer, 1966 (Figure 141) — wet leaves and moss on ground, Puketi; shadowed moss on wet ground near brook, Kerikeri (Hammer 1966).

Superfamily ORIBATELLOIDEA

Family ORIBATELLIDAE

Genus Lamellobates Hammer, 1958: 100
Type-species *Lamellobates palustris* Hammer, 1958.

Oribatellid mites with broad lamellae bordered on inner edges by chitinoid thickening and meeting medially at a knob-like process; notogaster with 10 pairs of setae and a few sacculi; genital setae numbering 6 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; monodactylous.

L. palustris Hammer, 1958 (Figure 143) — thick, moist moss under manuka, thermal area, Rotorua (Hammer 1967).

Superfamily ORIBATULOIDEA

Family HAPLOZETIDAE

Genus Angullozetes Hammer, 1967: 58
Type-species *Angullozetes rostratus* Hammer, 1967.

Haplozetid mites lacking a distinct dorsosejugal suture; notogaster with 10 pairs of minute setae and 3 pairs of areae porosae; genital setae numbering 3 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; monodactylous.

A. rostratus Hammer, 1967 (Figure 145) — Kerikeri (Hammer 1968); thick mosses and decaying leaves in native forest, Fox Glacier, dead leaves in *Nothofagus* forest, and wet moss on rotten branch, Milford Sound (Hammer 1967).

Genus Lauritzenia Hammer, 1958: 83
Type-species *Lauritzenia longipluma* Hammer, 1958.

Haplozetid mites with lamellae reaching almost to base of rostral setae; notogaster with 10 pairs of setae and 4 pairs of sacculi; many setae of prodorsum and notogaster accompanied by a pore, pteromorphae moveable; genital setae numbering 4 or 5 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; tridactylous (both New Zealand species) or monodactylous.

Family TEGORIBATIDAE

Paraphysobates new genus
Type-species *Physobates monodactylus* Hammer, 1966.

Tegoribatid mites with lamellae fused into a shield covering almost the whole prodorsum; sensilli with a swelling in middle of stalks; pteromorphae moveable; notogaster with 6 pairs of alveoli, 3 pairs of setae on posterior border, and 4 pairs of areae porosae; genital setae numbering 5 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 2 pairs; monodactylous.

P. monodactylus (Hammer, 1966) (Figure 142) — moss and dead leaves, Puketi and Waitakere Range; moss and ferns on slope with tall trees, Mirror Lake, Rotorua; wet moss and liverworts in swamp grown with *Scirpus* in native forest, Paatahanam, dead leaves in *Nothofagus* forest, Upper Takaka; thick moss on tree trunk, and wet moss and liverworts in native forest, Fox Glacier; dead leaves in *Nothofagus* forest, Milford Sound (Hammer 1966).

Superfamily ORIBATULOIDEA

Family HAPLOZETIDAE

Genus Angullozetes Hammer, 1967: 58
Type-species *Angullozetes rostratus* Hammer, 1967.

Haplozetid mites lacking a distinct dorsosejugal suture; notogaster with 10 pairs of minute setae and 3 pairs of areae porosae; genital setae numbering 3 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; monodactylous.

A. rostratus Hammer, 1967 (Figure 145) — Kerikeri (Hammer 1968); thick mosses and decaying leaves in native forest, Fox Glacier, dead leaves in *Nothofagus* forest, and wet moss on rotten branch, Milford Sound (Hammer 1967).

Genus Lauritzenia Hammer, 1958: 83
Type-species *Lauritzenia longipluma* Hammer, 1958.

Haplozetid mites with lamellae reaching almost to base of rostral setae; notogaster with 10 pairs of setae and 4 pairs of sacculi; many setae of prodorsum and notogaster accompanied by a pore, pteromorphae moveable; genital setae numbering 4 or 5 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; tridactylous (both New Zealand species) or monodactylous.

Family TEGORIBATIDAE

Paraphysobates new genus
Type-species *Physobates monodactylus* Hammer, 1966.

Tegoribatid mites with lamellae fused into a shield covering almost the whole prodorsum; sensilli with a swelling in middle of stalks; pteromorphae moveable; notogaster with 6 pairs of alveoli, 3 pairs of setae on posterior border, and 4 pairs of areae porosae; genital setae numbering 5 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 2 pairs; monodactylous.

P. monodactylus (Hammer, 1966) (Figure 142) — moss and dead leaves, Puketi and Waitakere Range; moss and ferns on slope with tall trees, Mirror Lake, Rotorua; wet moss and liverworts in swamp grown with *Scirpus* in native forest, Paatahanam, dead leaves in *Nothofagus* forest, Upper Takaka; thick moss on tree trunk, and wet moss and liverworts in native forest, Fox Glacier; dead leaves in *Nothofagus* forest, Milford Sound (Hammer 1966).

Superfamily ORIBATULOIDEA

Family HAPLOZETIDAE

Genus Angullozetes Hammer, 1967: 58
Type-species *Angullozetes rostratus* Hammer, 1967.

Haplozetid mites lacking a distinct dorsosejugal suture; notogaster with 10 pairs of minute setae and 3 pairs of areae porosae; genital setae numbering 3 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; monodactylous.

A. rostratus Hammer, 1967 (Figure 145) — Kerikeri (Hammer 1968); thick mosses and decaying leaves in native forest, Fox Glacier, dead leaves in *Nothofagus* forest, and wet moss on rotten branch, Milford Sound (Hammer 1967).

Genus Lauritzenia Hammer, 1958: 83
Type-species *Lauritzenia longipluma* Hammer, 1958.

Haplozetid mites with lamellae reaching almost to base of rostral setae; notogaster with 10 pairs of setae and 4 pairs of sacculi; many setae of prodorsum and notogaster accompanied by a pore, pteromorphae moveable; genital setae numbering 4 or 5 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; tridactylous (both New Zealand species) or monodactylous.

01 Length less than 500 µm; rostrum pointed; sensilli thread-like along entire length ... *acutirostrum*

— Length more than 600 µm; rostrum rounded; sensilli thread-like, but with tiny, expanded heads ending in points ... (Fig. 149) ... *rotundirostrum*

L. rotundirostrum Hammer, 1968 (Figure 149) — thin layer of moss and small plants scraped from bark of big tree, Puketi (Hammer 1968).

Genus Magnobates Hammer, 1967: 30
Type-species Magnobates flagellifer Hammer, 1967.
Haplozetid mites without translamella or cuspis; notogaster with 10 pairs of setae and 4 pairs of sacculi; pteromorphae moveable; genital setae numbering 4 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; tridactylous, the lateral claws with an inner subsidiary tooth.

M. flagellifer Hammer, 1967 (Figure 150) — Puketi (Hammer 1968); thin moss on lawn, Kerikeri (Hammer 1967).

REMARKS. The specific epithet is erroneously spelled “flagelliger” in the text of Hammer (1968).

Genus Peloribates Berlese, 1908: 3
Type-species Oribata peloptoides Berlese, 1888.
Haplozetid mites with 14 pairs of long notogastral setae and 4 pairs of sacculi; genital setae numbering 5 pairs, aggenital setae 1–3 pairs, anal setae 2 pairs, adanal setae 3 pairs; tridactylous.

P. fragilis Hammer, 1967 (Figure 147) — green foliage below tall redwood trees, Forest Research Institute, Whakarewarewa; moss on dead tree trunk in native forest, New Plymouth; nest of Gerygone igata, Arthur’s Pass; thick, moist moss and liverworts on tree trunk in native forest, Fox Glacier (Hammer 1967).

P. magnisetosus Hammer, 1967 — thick, green carpet of wet mosses and small ferns near brook in deep, shadowed cleft, Kerikeri (Hammer 1967); Rukuhia peat pasture, near Hamilton (Luxton 1982c).

REMARKS. P. magnisetosus is ascribed to Ramsay by Hammer (1967), although no description was ever formally published by him.

Genus Rostrozetes Sellnick, 1925: 84
Type-species Rostrozetes foveolatus Sellnick, 1925.
Haplozetid mites with dorsosejugal suture in 3 arches; notogaster with 14 pairs of setae and 4 pairs of sacculi; genital setae numbering 6 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; monodactylous.

R. foveolatus Sellnick, 1925 (Figure 148) — moist moss and small ferns under manuka, thermal area. Rotorua (Hammer 1967).

Genus Totobates Hammer, 1961: 110
Type-species Totobates discifer Hammer, 1961.
Haplozetid mites lacking a distinct dorsosejugal suture; notogaster with 10 pairs of conspicuous setae and 3 pairs of arcate porosae; genital setae numbering 3 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; monodactylous.

Genus Sicaxylobates new genus
Type-species Xylobates sicafer Hammer, 1968.
Haplozetid mites with broad, branched setae on femora I and II and tarsi I–III; sensilli thread-like; notogaster with 10 pairs of setae and 4 pairs of arcate porosae; genital setae numbering 6 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; tridactylous.

S. sicafer (Hammer, 1968) (Figure 151) — luxuriant moss and grass on lawn, Kerikeri (Hammer 1968).

REMARKS. The specific epithet is erroneously spelled “flagelliger” in the text of Hammer (1968).
— Distance between r1 setae twice distance between p1 setae ... ovalis

07(03) Lamellar setae minute ... microseta
— Lamellar setae conspicuous ... 8

08(07) Length less than 300 µm ... minimus
— Length more than 300 µm ... 9

09(08) Areae porosae subequal in size ... antarcticus
— Area porosa A3 smaller than either Aa or A2 ... latus

— / NC-WD.

— / — / Macquarie I.

ND. AK. TK. WN / BR. WD. FD / Campbell 1.

T. capita Hammer, 1968 (Figure 146) — thick moss and lichens on log under trees. and moss and liverworts on overgrown road in deep shade, Kerikeri; moss and grass under bushes in garden on edge of forest. Waitakere Range (Hammer 1968).
ND. AK / —.

T. communis Hammer, 1967 — Kerikeri (Hammer 1968); moss and liverworts in native forest, Waitakere Range; decaying leaves under trees at roadside. Waitakere; thick moss with bone-dry lichens and Lycopodium in open manuka scrub and Nothofagus forest a few hundred feet above Lake Rototiti (Hammer 1967).
ND. AK. Wo / BR.

— / — / Macquarie I.

T. latus Hammer, 1967 — liverworts and moss on log in native forest, Waitakere Range; moist to wet sphagnum near a spring in Nothofagus forest, Lake Rototiti; decaying leaves and small ferns on ground in native forest, Fox Glacier; thick moss by Lake Matheson; liverworts on dead branch in Nothofagus forest, Milford Sound (Hammer 1967).
AK / BR. WD. FD.

— / BR.

— / MC.

T. minimus Hammer, 1967 — thick moss at foot of huge tree. decaying leaves. and moss on tree trunks. in native forest. Fox Glacier; thick moss. Lake Matheson (Hammer 1967).
— / WD.

ND. AK. Wo, BP. TK. WN / NN. WD. FD.

Genus Xylobates Jacot, 1929: 429

Type-species Oribates lophotrichus Berlese, 1904. Haplozetid mites with thread-like sensilli, somewhat expanded at tip; notogaster with 10 or 11 pairs of setae and 4 pairs of areal areoles; genital setae numbering 5 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; monodactylous.

X. capucinus (Berlese, 1909) — moist to wet luxuriant moss on ground in dense, entangled shrub vegetation, Kerikeri (Hammer 1967).
ND / —.

Family NEOTRICHÖZETIDAE

Genus Neotrichozetes Travé, 1961: 374

Type-species Notaspis spinulosa Michael, 1908.
Neotrichozetid mites with 32–35 pairs of extremely long notogastral setae and 8 pairs of areal porosae; genital setae numbering 6 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; tridactylous.
N. spinulosa (Michael, 1908) (Figure 144) — moist moss on ground under tall trees near small brook, Kerikeri; luxuriant moss and liverworts on tree trunk in tree fern forest, Waitomo; wet liverworts on dead branch on mountainside with *Nothofagus* forest, Milford Sound (Hammer 1966).

ND, WO / FD.

REMARKS. Michael (1908) gave no precise details of location or habitat.

Family ORIBATULIDAE

Genus Crassoribatula Hammer, 1967: 46
Type-species *Crassoribatula maculosa* Hammer, 1967.

Oribatulid mites with short lamellae lacking cuspus and translamella; anterior border of notogaster concave; notogaster with tubercles, 10 pairs of setae and 4 pairs of areae porosae; genital setae numbering 6 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; tridactylous.

C. maculosa Hammer, 1967 (Figure 162) — dead leaves and moss under manuka, thermal area, Rotorua; green foliage of understorey vegetation in redwood forest, Whakarewarewa; green moss on decaying tree trunk in *Nothofagus* forest, Lake Rotiiti (Hammer 1967).

BP, WN / BR.

Genus Ingella Hammer, 1967: 48
Type-species *Ingella bullager* Hammer, 1967.

Oribatulid mites with an indistinct dorsosejugal suture; lamellae without cuspus; notogaster with 10 pairs of setae and 4 pairs of areae porosae; genital setae numbering 2 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; monodactylous.

I. bullager Hammer, 1967 (Figure 158) — thick moss on dead tree trunk in shadow, Waitomo; green foliage of understorey vegetation in redwood forest, Whakarewarewa; green foliage, 'Freeland's', Himatangi; moss on decaying tree trunk in *Nothofagus* forest, Lake Rotiiti (Hammer 1967).

03(01) Interlamellar setae not reaching tip of rostrum
— Interlamellar setae reaching or exceeding tip of rostrum

04(01) Notogastral setae long, all reaching base of nearest adjacent seta
— Notogastral setae short, none reaching base of nearest adjacent seta

Genus Liebstadia Oudemans, 1906: 101
Type-species *Notaspis similis* Michael, 1888.

Oribatulid mites with 10 pairs of notogastral setae and 4 pairs of areae porosae; genital setae numbering 4 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; monodactylous.

Genus Maculobates Hammer, 1961: 61

Oribatulid mites lacking a distinct dorsosejugal suture; notogaster with 10 pairs of setae and 3 or 4 pairs of areae porosae; genital setae numbering 3 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; monodactylous.

01 Length more than 500 μm
— Length 400–500 μm
— Length less than 400 μm

02(01) Sensilli with broad heads
— Sensilli with narrow heads

03(01) Interlamellar setae not reaching tip of rostrum
— Interlamellar setae reaching or exceeding tip of rostrum

04(01) Notogastral setae long, all reaching base of nearest adjacent seta
— Notogastral setae short, none reaching base of nearest adjacent seta

05(04) Seta *r1*, pore *ip*, and area *porosa* *A3* close together in a group
— Not as above

M. longiporosus Hammer, 1967 (Figures 6 and 7) — by a river, in a steep cleft, Kerikeri; thick layer of slightly moist moss or (?) liverworts under manuka, thermal area, Rotorua (Hammer 1967).

ND, BP / —.

M. longus Hammer, 1967 — Kerikeri (Hammer 1968); thick moss and liverworts under trees on river bank, Hokitika; thick moss on dead branches in tree-fern forest, and in thick moss, white clover, and grass at roadside, Milford Sound (Hammer 1967); foliage of *Olearia colensoi* (precise localities not known) (Spain & Harrison 1968).

ND / WD, FD.

M. luteomarginatus Hammer, 1967 — thick liverworts and dead leaves on ground in native forest, Fox Glacier (Hammer 1967); also Christchurch and Milford Sound (Hammer 1968).
—/ MC, WD, FD.

M. lutes Hammer, 1967 — thick moss and liverworts on tree trunk in native forest, Waitomo (Hammer 1967).
WO/ —.

M. magnus Hammer, 1967 — decaying leaves in native forest, Lake Matheson (Hammer 1967).
— / WD.

M. minor Hammer, 1967 — moss on rimu tree, Puketi; (?) liverworts under tree fern in deep shadow, Waitomo; moss and liverworts in depression with Scirpus in native forest, Pauatahanui; almost dry moss under manuka, Pupu Springs; thick moss and liverworts on tree trunk in native forest, Fox Glacier; moist to wet moss on rotten branch on ground in Nothofagus forest, Milford Sound (Hammer 1967); also Kerikeri and Waitakere Range (Hammer 1968).
ND, AK, WO, WN / NN, WD, FD.

M. vulgaris Hammer, 1967 — moss on lawn, Forest Research Institute, Whakarewarewa; moist, decaying leaves, wet liverworts, and thin mosses on dead branches in native forest, Pauatahanui (Hammer 1967).
WN/ —.

Genus Sellnickia Oudemans, 1927: 268
Type-species Notaspis caudata Michael, 1908.
Oribatulid mites with posterior edge of hysterosoma drawn out into a conical extension; notogaster with setae (10 pairs?) reduced to alveoli and 4 pairs of areae porosae; genital setae numbering 6 pairs, aggenital setae 1 pair, anal setae 2 pairs; adanal setae 3 pairs; tridactylous.

S. caudata (Michael, 1908) (Figure 161) — green leaves, Rotoehu State Forest, Rotomahana; foliage of Nothofagus forest, Milford Sound (Hammer 1967); also Kerikeri and Waitakere Range (Hammer 1968).
BP / MB.

REMARKS. Michael (1908) gave no precise details of location or habitat.

Genus Zygoribatula Berlese, 1917: 317
Type-species Oribatula connexa Berlese, 1904.
Oribatulid mites with 13 pairs of notogastral setae and 4 pairs of areae porosae; genital setae numbering 4 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; tridactylous.

01 Notogaster striate ... 2
— Notogaster not striate ... 3

02(01) Lamellar cuspis well developed; length more than 500 µm ... magna
— No lamellar cuspis; length less than 500 µm ... connexa

03(01) Rostrum pointed; at most only anterior notogastral setae pilose
... (Fig. 160) ... novazealandica
— Rostrum rounded; all notogastral setae pilose ... terricola

Z. connexa (Berlese, 1904) — Rukuhia and Kaipaki peat pastures, near Hamilton (Luxton 1982d, 1983b); wet liverworts and mosses under bushes on river bank, and liverworts on vertical slope, Pauatahanui (Hammer 1967).
WO, WN / —.

WN / —.

Z. novazealandica Hammer, 1967 (Figure 160) — on slope with plantation, Kerikeri (Hammer 1967).
ND / —.

Z. terricola van der Hammen, 1952 — pastures on Taia hill soil and Pomare silty loam, DSIR Soil Bureau Experimental Station, Lower Hutt (McMillan 1969); pasture on Akatarawa hill soil, Hutt Valley (Adams 1971).
WN / —.

REMARKS. Manson (1959) records "Z. ?connexa" from ryegrass pasture near Palmerston North.

Family SCHELORIBATIDAE

Genus Campbelllobates Wallwork, 1964: 601
Type-species Campbelllobates acanthus Wallwork, 1964.
Scheloribatid mites with bothridia covered by anterior edge of notogaster; notogaster with 10 pairs of setae and 1 or 2 pairs of sacculi; genital setae numbering 4 pairs, aggenital setae absent, anal setae 1 pair, adanal setae 3 pairs; monodactylous.

01 Integument with porose microsculpture ... 2
— Integument smooth ... 3

02(01) Rostrum mid-dorsally with an indentation containing a small, sclerotised lobe ... acanthus
— Rostrum without a mid-dorsal indentation ... aureus

03(01) Rostrum incised laterally; hysterosoma hourglass-shaped
... (Fig. 153) ... latohumeralis
— Rostrum entire; sides of hysterosoma more nearly parallel ... occultus
C. acanthus Wallwork, 1964 — Beeman Hill, Campbell Island (Wallwork 1964b).

— / — / Campbell 1.

C. aureus Hammer, 1967 — mosses below ferns in shadow near beach, Milford Sound (Hammer 1967).

— / FD.

C. latohumeralis Hammer, 1967 (Figure 153) — moist to wet liverworts on big tree trunk in native forest, Fox Glacier; wet liverworts and moss on rotten branch in *Nothofagus* forest, mosses on ground, and mosses on stone, Milford Sound (Hammer 1967).

— / FD.

C. occultus Hammer, 1967 — luxuriant moss on dead tree trunk in native forest, Fox Glacier (Hammer 1967); foliage of *Olearia colensoi* (precise localities not known) (Spain & Harrison 1968).

— / WD.

Genus Grandjeanobates Hammer, 1967: 36

Type-species *Grandjeanobates nova-zealandicus* Hammer, 1967.

Scheloribatid mites with exceptionally elongate and narrow pteromorphae; notogaster with 10 pairs of setae and 4 pairs of sacculi; genital setae numbering 4 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; tridactylous.

G. nova-zealandicus Hammer, 1967 (Figure 155) — Puketi and Kerikeri (Hammer 1968); moist moss and dead leaves, and liverworts, moss, and small ferns on dead tree trunk in native forest, Waitakere Range; liverworts and moss on slope, Lake Tarawera; moss on tree trunk in native forest, New Plymouth (Hammer 1967).

ND, AK, BP, TK / —.

REMARKS. Hammer (1967) ascribed this genus to Ramsay, but no description was ever formally published by him. Ramsay (1960) recorded a subfossil specimen of Scheloribatidae from "industrial bore holes" in the Hutt Valley which may be a species of *Grandjeanobates*.

Genus Incabates Hammer, 1961: 108

Type-species *Incabates nudus* Hammer, 1961.

Scheloribatid mites with 8 pairs of setal alveoli, 2 pairs of setae, and 4 pairs of sacculi on notogaster; genital setae numbering 4 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; tridactylous.

I. angustus Hammer, 1967 (Figure 156) — Puketi and Kerikeri (Hammer 1968); liverworts and small ferns on dead tree trunk in native forest, Waitakere Range; moss on tree trunk in native forest, New Plymouth (Hammer 1967).

ND, AK, TK / —.

Genus Scheloribates Berlese, 1908: 2

Type-species *Zetes latipes* Koch, 1844.

Scheloribatid mites with 10 pairs of notogastral setae and 4 pairs of sacculi; genital setae numbering 4 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; tridactylous.

<table>
<thead>
<tr>
<th>01</th>
<th>Length more than 500 μm</th>
<th>... 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Length 400–500 μm</td>
<td>... 4</td>
</tr>
<tr>
<td></td>
<td>Length less than 400 μm</td>
<td>... 7</td>
</tr>
</tbody>
</table>

02(01) Lamellar and interlamellar setae smooth

— Lamellar and interlamellar setae somewhat pilose

<table>
<thead>
<tr>
<th>03(02) Lamellar setae with a distinct curved ridge between bases</th>
<th>... crassus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lamellar setae without a ridge between bases</td>
<td>... anzacensis</td>
</tr>
</tbody>
</table>

04(01) Tridactylous

— Monodactylous

05(04) Anterior edge of pteromorphae sloping posteriorly; sensilli fusiform

— Anterolateral edges of pteromorphae jutting forwards; sensilli lanceolate

<table>
<thead>
<tr>
<th>06(04) Tips of sensilli produced into long threads</th>
<th>... (Fig. 157) ... keriensis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tips of sensilli not produced into long threads</td>
<td>... conjuges</td>
</tr>
</tbody>
</table>

07(01) Sensilli smooth, capitate; interlamellar setae flagelliform, reaching beyond tip of rostrum

— Sensilli pilose, lanceolate; interlamellar setae not reaching beyond tip of rostrum

<table>
<thead>
<tr>
<th>01</th>
<th>Tips of sensilli produced into long threads</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>... (Fig. 157) ... keriensis</td>
</tr>
<tr>
<td></td>
<td>Tips of sensilli not produced into long threads</td>
</tr>
<tr>
<td></td>
<td>... conjuges</td>
</tr>
</tbody>
</table>

S. aequalis Hammer, 1967 — Kerikeri and Waitakere Range (Hammer 1968); dry moss under manuka, thermal area, Rotorua (Hammer 1967).

ND, AK, BP / —.

S. anzacensis Hammer, 1967 — Puketi and Kerikeri (Hammer 1968); on ground, Anzac Park, Palmerston North (Hammer 1967).

ND, WI / —.

S. conjugae Hammer, 1967 — thick, moist moss on ground near small stream in deep cleft with tall trees, Kerikeri (Hammer 1967); wet pohutukawa leaf litter at top of forest, Ohauora, White Island (Wise 1970).

ND, BP / —.

ND, AK, TK, WN / NN, BR, WD, FD, DN.

— / — / Campbell I.

S. keriensis Hammer, 1967 (Figure 157) — thick, wet carpet of small ferns and mosses near small stream in deep cleft grown with tall trees, Kerikeri (Hammer 1967).
ND / —.

S. maoriensis Hammer, 1968 — thick green moss under manuka, thermal area, Rotorua (Hammer 1968).
BP / —.

— / WD.

S. zealandicus Hammer, 1967 — Puketi and Rotorua (Hammer 1968); Kerikeri; moist to wet Sphagnum near a spring in Nothofagus forest, and wet moss and liverworts on vertical slope above small stream in Nothofagus forest, Lake Rotoiti (Hammer 1967).
ND, BP / BR.

Genus alone recorded from pastures on Taita hill soil and Pomare silt loam, DSIR Soil Bureau Experimental Station, Lower Hutt (McMillan 1969).
WN / —.

Genus Setobates Balogh, 1962: 122
Type-species Setobates magnus Balogh, 1962.
Scheloribatid mites with a striate, punctulate notogaster bearing 13 pairs of setae and 4 pairs of sacculi; genital setae numbering 4 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; tridactylous.

S. medius Hammer, 1967 (Figures 4 and 5) — Puketi (Hammer 1968); near river, and in thin layer of moss and lichens on tree near small stream in shadowed cleft, Kerikeri (Hammer 1967); Waitakere Range and Waitomo (Hammer 1968).
ND, AK, WO / —.

S. scheloribatoides (Ramsay, 1966) — Kerikeri Falls (Hammer 1967); Waitomo and Rotorua (Hammer 1968); moss, grass, and white clover on lawn shaded by tall trees in former native forest, New Plymouth; bitten-off grass and white clover on bank of small stream, Pauatahanui (Hammer 1967); clover/ryegrass pasture, Silverstream (Ramsay 1966a); moss and grass on lawn, Nelson (Hammer 1967); pasture, Nelson (Martin 1978).
ND, WO, BP, TK, WN / NN.

Remarks. There appear to be no real differences between S. medius and S. discors Hammer, 1967, as the small extra seta on the pteromorph edge of S. discors appears from Hammer's discussion to be an aberration on a single specimen. I propose that S. discors should be relegated to synonymy. S. minor, described by Hammer (1967), was subsequently synonymised with S. scheloribatoides by Hammer (1968).

Genus Zeascheloribates Luxton, 1982: 325
Type-species Zeascheloribates palustris Luxton, 1982.
Scheloribatid mites with 9 pairs of notogastral setae and 3 or 4 pairs of sacculi; genital setae numbering 3 pairs, aggenital setae absent, anal setae 2 pairs, adanal setae 3 pairs; monodactylous.
Z. palustris Luxton, 1982 (Figure 154) — restiad and fern peat soils, near Hamilton (Luxton 1982a, c, 1983a).
WO / —.

Superfamily PASSALOZETOIDEA
Family PASSALOZETIDAE
Genus Paraphauloppia Hammer, 1967: 45
Type-species Paraphauloppia novazealandica Hammer, 1967.
Passalozetid mites with costulae; dorsosejugal suture indistinct; lenticulus absent; notogaster with 10 pairs of setae and 4 pairs of areae porosae; genital setae numbering (?3 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; tridactylous.
P. novazealandica Hammer, 1967 (Figure 164) — thick moss and bone-dry lichens and Lycopodium in open manuka and Nothofagus forest a few hundred feet above Lake Rotoiti (Hammer 1967).
— / BR.

Genus Subphauloppia Hammer, 1967: 44
Type-species Subphauloppia dentonyx Hammer, 1967.
Passalozetid mites lacking costulae; dorsosejugal suture distinct and arched; lenticulus absent; notogaster with 10 pairs of setae and 4 pairs of areae porosae; genital setae numbering 4 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; tridactylous.
S. dentonyx Hammer, 1967 (Figure 165) — decaying leaves on shadowed slope above small stream, Kerikeri; wet moss and liverworts in small depression grown with
Family SCUTOVERTICIDAE

Genus Scutovertex Michael, 1879: 241

Type-species Scutovertex sculptus Michael, 1879.

Scutoverticid mites with a quadrate lenticulus anteriorly on notogaster; notogaster with 9 pairs of setae and 2 pairs of minute areae porosae; genital setae numbering 6 pairs, aggenital setae 1 pair, anal setae 2 pairs, adanal setae 3 pairs; tridactylous.

S. sculptus Michael, 1879 (Figure 163) — moss and grass on lawns, and at roadsides, Kerikeri; also Waitomo, Rotorua, New Plymouth, and Nelson (Hammer 1966); Rukuhia and Kaipaki peat pastures, near Hamilton (Luxton 1982d, 1983b); pastures on Taia hill soil and Pompom silt loam, DSIR Soil Bureau Experimental Station, Lower Hutt (McMillan 1969); pasture on Akatarawa hill soil, Hutt Valley (Adams 1971).

REFERENCES

Superfamily PELOPOIDEA

Family PELOPIDAE

Genus Nesopelops Hammer, 1973: 28

Type-species Pelops punctatus Hammer, 1966.

Pelopid mites with a broad, truncate notogaster bearing (7)–10 pairs of setae situated more or less around circumference; genital setae numbering 6 pairs, aggenital setae absent, anal setae 2 pairs, adanal setae 2 pairs; monodactylous.

**O.1 Sensilli pilose; interlamellar setae striate; setae m3 similar in form to other notogastral setae

... (Fig. 166) ... punctatus**

— Sensilli smooth; interlamellar setae smooth; setae m3 different in form to other notogastral setae ... monodactylus

N. monodactylus (Hammer, 1966) — dead leaves, Pukeiti; dead leaves and moss in tree-fern forest, moss and liverworts on tree trunk, and dead leaves under tree outside forest, Waitomo; moist, dead leaves in mixed forest, Pauatahanui (Hammer 1966).

ND, WO, WN / —.

N. punctatus (Hammer, 1966) (Figure 166) — grass, moss, lichens, dead leaves, and on branches under shrubs and trees, Kerikeri; moss, dead leaves, and liverworts, Wai-takere Range; dead leaves and moss, thermal area, Roto-rua; moist, dead leaves in Nothofagus forest, Upper Takaka; thick moss in Nothofagus forest, Lake Rototoi; dead leaves in Nothofagus forest, Milford Sound (Ham-mer 1966).

ND, AK, BP / NN, BR, FD.

REMARKS. *N. punctatus* is ascribed to Ramsay by Ham-mer. However, since the first formally published description of the species is that of Hammer (1966), the species must be ascribed to her.

REFERENCES

APPENDIX: Species other than mites mentioned in text, and their family affiliation

(Recording authors' nomenclature has been cited as originally published, but family-group names are those currently recognised.)

Agathis australis (kauri) — Araucariaceae
Agrostis magellanica — Poaceae
albatross; see *Diomedea* spp.
Azorella — Hydrocotylaceae
Carex sp. (sedge) — Cyperaceae
Colobanthus muscoides — Caryophyllaceae
Coprosma sp. — Rubiaceae
cormorant; see *Phalacrocorax* sp.
Cnida plumosa — Asteraceae
Cupressus sp. (cypress) — Cupressaceae
cypress; see *Cupressus* sp.
Dacrydium cupressinum (rimu) — Podocarpaceae
Diomea sp. (albatrosses, mollymawks) — Diomedeidae
Eucalyptus sp. — Myrtaceae
Eudyptes crestatus (rockhopper penguin) — Spheniscidae
Gerygone igata (grey warbler) — Muscicapidae
hard beech; see *Nothofagus truncata*
Hieracium sp. — Asteraceae
Histiopteris sp. — Pteridaceae
Hymenanthera chathamica — Violaceae
Juncus sp. (rush) — Juncaceae

Agathis australis (kauri); see *Agathis australis*
Eucalyptus sp. — Myrtaceae
Leptospermum scoparium (manuka) — Myrtaceae
Leucobryum sp. — Dicranaceae
Lolium perenne (ryegrass) — Poaceae
Lycopodium sp. — Lycopodiaceae

manuka; see *Leptospermum scoparium*
Medicago sp. — Papilionaceae
Metrosideros excelsa (pohutukawa) — Myrtaceae
Minimus sp. — Scrophulariaceae
mollymawk; see *Diomedea* spp.
Muehlenbeckia australis (pohuehue) — Polygonaceae
Mysirine chathamica — Myrsinaceae

Nasturium sp. (watercress) — Brassicaceae
Neopanax sp. — Araliaceae
Nestor notabilis (kea) — Nestoridae
Nothofagus solandri (black beech) — Fagaceae
Nothofagus truncata (hard beech) — Fagaceae

Olearia colensoi (leatherwood) — Asteraceae
Olearia lacunosa — Asteraceae
Olearia traversii — Asteraceae

Phalacrocorax sp. (cormorant, shag) — Phalacrocoracidae
Phormium tenax (New Zealand flax) — Agavaceae
Phyllocladus trichomanoides (tanekaha) — Podocarpaceae
Pinus radiata (radiata pine) — Pinaceae

Phyllanthus sp. — Asteraceae
Poa annua — Poaceae
Poa foliosa — Poaceae
Poa hamiltoni — Poaceae
*pohutukawa; see *Metrosideros excelsa*
Polytrichum sp. — Polytrichaceae
Puccinellia macquariensis — Poaceae
Puffinus griseus (muttonbird) — Procellariidae

Ranunculus sp. — Ranunculaceae
Sequoia sp. — Taxodiaceae
Rhizoclonium sp. — Cladophoraceae
*rimu; see *Dacrydium cupressinum*
*rockhopper penguin; see *Eudyptes crestatus*
*ryegrass; see *Lolium perenne*

Scirpus sp. — Cyperaceae
Selaginella sp. — Selaginellaceae
Sequoia sp. — Taxodiaceae
Sphagnum sp. — Sphagnaceae
Stilbocarpa sp. — Araliaceae

tanekaha; see *Phyllocladus trichomanoides*

tree ferns — Cyatheaceae
Trifolium repens (white clover) — Papilionaceae

watercress; see *Nasturium* sp.
*white clover; see *Trifolium repens*
ILLUSTRATIONS

Figures 1–9 Morphological features of the Cryptostigmata, as typified by representative species.

Figures 10–166 Representative species from the genera of Cryptostigmata known from New Zealand (dorsal views, or slightly dorsolateral, except Fig. 13–19, which are in lateral view).

Reproduced, with permission, from the works of describing authors. All figures are semi-diagrammatic, and are substantially as originally published. Scale lines represent 100 μm.

Figures 1–3 Features visible in dorsal, lateral, and ventral view respectively, Trimalaconothrus tonkini.
Figures 4 and 5 Features visible in dorsal and ventral view, Setobates medius.

KEY TO SYMBOLS
(Setal notation not listed here is described in the text section "Morphology", p. 13.)

Aa areae porosae adalares
A1–3 areae porosae mesonoticae 1–3
ad adanal setae
ag aggenital setae
apo apodematum
bo bothridium
cu cuspis
disc discidium
Figures 6 and 7 Features visible in dorsal and ventral view, *Maculohares longipilosus.*

- **ep** epimeron
- **cx** exobothridial setae
- **in** interlamellar setae
- **la** lamellae
- **le** lamellar setae
- **ro** rostral setae
- **Sa** sacculi adalares
- **S1-3** sacculi mesonoticae 1-3
- **ss** sensilli
- **trs** translamella
- **tu** tutorium
Figures 8 and 9 Features of prodorsum, *Punctoribates punctum* and *P. manzanoensis*.

10. *Aphelacarus* sp.

11. *Acaronychus* sp.

12. *Stomacarus ligamentifer*
13. Protophthiracarus neotrichus

14. Hoplophorella sp.

15. Phthiracarus pellucidus

16. Notophthiracarus australis

17. Microtritia sp.

18. Indotritia aotearoaana

19. Mesotritia sp.
20. *Cosmochthonius semiareolatus*

21. *Liochthonius fimbriatissimus*

22. *Brachychthonius novazealandicus*

23. *Hypochthoniella minutissima*

24. *Hypochthonius luteus*

25. *Nanhermannia acutisetosa*

26. *Phyilhermannia phyllophora*
27. Crotonia caudalis

28. Austronothrus curviseta

29. Holonothrus pulcher

30. Camisia sagnis nova

31. Heminothrus microclava

32. Platynothrus major
33. *Novanothrus pupuensis*

34. *Nothrus silvestris anauniensis*

35. *Trhypochthonius excavatus*

36. *Alloanothrus sp.*

37. *Malacanothrus keriensis*

38. *Mucronothrus nasalis*
39. Zeanothrus elegans

40. Fossonothrus novaezelandiae

41. Fortuynia elamellata

42. Scapheremaeus insularis

43. Capillibates stagaardi

44. Bulleremaeus tuberculatus

45. Alaskozetes antarcticus
46. *Podacarbus auberti*

47. *Halozetes otagoensis*

48. *Metabelba obtusus*

49. *Tectocepheus velatus novus*

50. *Carabodes variabilis*

51. *Austrocarabodes elegans*

52. *Tikizetes spinipes*
53. Eremulus flagellifer

55. Pedrocortesia rotoruensis

56. Pedrocortesella nigroclava

57. Hermaniella microsetosa

58. Hydrozetes lemnae
59. Cultroribula lata
60. Maorizetes ferox
61. Adhaesozetes barbarae
62. Pseudoceratoppia diversa
63. Macquarioppia striata
64. Liodes nigricans
66. Austrogneta multipliosa

65. Tuparezetes christineae

67. Suctobelbila dentata

68. Zeasuctobelba nodosa

69. Suctobelba nondivisa

70. Tripiloppia aokii

71. Laminoppia blocki
73. **Solanoppia grandjeani**

72. **Procossoppia oudemansi**

74. **Campbellioppia diaphora**

75. **Acutoppia crassiseta**

76. **Rhaphoppia mihelcici**

77. **Gressittoppia baderi**
79. *Opeculoppia kunstii*

78. *Paroppia lebruni*

80. *Polyoppia baloghi*

81. *Trizetes sp.*

82. *Oxyoppia suramericana*

83. *Brachioppiella rajsiki*

84. *Machuella pyriformis*
92. *Micropia minutissima*

93. *Amerioppia woolleyi*

94. *Pletzenoppia rafalskii*

95. *Arcoppia winkleri*

96. *Austroppia crozetensis*

97. *Setuloppia newelli*
98. Membranoppia krivoluzkyi

99. Globoppia nidicola

100. Pravoppia disjuncta

101. Nesoppia tuxeni

102. Baioppia moritzi

103. Loboppia covarrubiasi
111. *Tumerozetes circularis*

112. *Topalia velata*

113. *Nodocephesus dentatus*

114. *Pterozetes novazaelandicus*

115. *Eutegaeus stylesi*

116. *Neseutegaeus spinatus*

117. *Borneuschia peculiaris*
124. Cryptobothria monodactyla

125. Punctoribates manzancensis

126. Neomycobates tridentatus

127. Baloghobates nudus

128. Antarctozetes longicaulis

129. Macrogena rudentiger
130. *Tutorozetes termophilus*

131. *Magellozetes clathratus*

132. *Edwardzetes novazealandicus*

133. *Ceratozetes bicornis*

134. *Parafurcobates cuspidatus*

135. *Porokalumma rotunda*
136. Neoribates barbatus

137. Galumna scaber

138. Pergalumna silvestris

139. Allogalumna novazealandica

140. Acrogalumna longipluma

141. Cuspitegula stellifer

142. Paraphysobates monodactylus
143. Lamellobates palustris

144. Neotrichozetes spinulosa

145. Angullozetes rostratus

146. Totobates capita

147. Peloribates fragilis

148. Rostrozetes foveolatus
150. *Magnobates flagellifer*

149. *Lauritzenia rotundirostrum*

154. *Zeascheloribates palustris*

151. *Sicarylobates sicafer*

153. *Campbelllobates latohumeralis*

152. *Xylobates capucinus*
155. *Grandjeanobates novazealandicus*

156. *Incabates angustus*

157. *Scheloribates keriensis*

158. *Ingella bullager*

159. *Liebstadia similis*

160. *Zygoribatula novazealandica*
161. Sellnickia caudata

162. Crassoribatula maculosa

163. Scutovertex sculptus

164. Paraphauloppia novazealandica

165. Subphauloppia dentonyx

166. Nesopelops punctatus
TAXONOMIC INDEX

This index covers all the nominal families, genera, and species of cryptostigmatid mites mentioned in the text, regardless of their current status in taxonomy. The page number cited is that on which the taxon appears in the section "Diagnoses, keys to species, and collection records". Figure numbers for the taxa that are illustrated are given in that section, and in the section "Keys to the Cryptostigmata known from New Zealand" (p. 16; see also footnote on that page).

acanthus, Campbellobates 66, 67
acarinius, Parhypochthonius 25
ACARONYCHIDAE 25
Acaronychus 25
Acrogalumna 60
acutirostrum, Lauritzenia 63
acutisetosa, Nanhermannia 28
acutissimus, Totobates 64
Acutoppia 40
ADELPHACARIDAE 25
Adhaesozetes 39
ADHAESOZETIDAE 39
aequalis, Scheloribates 67
alamellae, Galumna 61
alatus, Notaspis 61
Alaskozetes 34
Allogalumna 61
Allonothrus 33
allomoniticola, Liochthonius 27
altus, Liochthonius 27
Amerioppia 41
anareensis, Totobates 64
anamensis, N. silvestris 32
Andacarus 25
andicola, Edwardzetes 57
andinus, Pedunculozetes 58
Angulozetes 62
angustirostrum, Trimalaconothrus 32
angustus, Incabates 67
angustus, Neseutegaeus 54
antarcticus, Alaskozetes 34
antarcticus, Totobates 64
Antarctozetes 59
anzacensis, Scheloribates 67
aoki, Tripiloppia 50
aotearoaana, Indotritia 25
Aphelacarus 25
Arcoppia 41
arcualis, Arcoppia 41
arcuata, Zeasuctobelba 52
asetosa, Pseudoceratoppia 40
ASTEGISTIDAE 39
auberti, Podacarus 35

aureus, Campbellobates 67
Austrachipteria 56
AUSTRACHIPTERIIDAE 56
australis, Notophthiracarus 26
australis, Pedrocortesia 38
Austrocarabodes 36
Austrognetia 40
Austrothrus 29
Austroppia 41
AUTOGNETIDAE 40

baderi, Gressittoppia 43
Baioppia 41
baloghi, Polyoppia 48
Balogkobates 59
banksi, Lanceoppia 45
barbarae, Adhaesozetes 39
barbatus, Neoribates 61
barbatus, N. dentatus 55
bathamae, Halozetes 35
becki, Lanceoppia 45
beemanensis, Belloppia 42
BELBIDAE 35
belgicae, Halozetes 35
Belloppia 42
berlesei, Lanceoppia 45
bertheti, Lanceoppia 45
biciliatus, Nothrus 32
bicornis, Ceratozetes 57
bidentatus, Austrachipteria 56
bifurcatus, Tumerozetes 55, 56
blocki, Laminoppia 43
Bornebuschia 53
bostocki, Eutegaeus 54
bostocki, Oribaia 54
Brachioppia 43
Brachybioppia 42
Brachychochthonius 26
BRACHYCHTHONIIDAE 26
Brachychochthonus 26
brachyramosa, Arcoppia 41
brevicornuta, Crotonia 30
bulanovae, Oppiella 49
bulanovae, Piloppia 49
bullager, Ingella 65
Bulleremaeus 33
Camisia 28
CAMISIIDAE 28
campbellensis, Globoppia 43
campbellensis, Stomacarus 25
Campbellobates 66
Campbelloppia 42
Capillibates 33
capita, Totobates 64
capucinus, Xylobates 64
Carabodes 36
Carabodidae	36
caudalis, Crotonia	30
caudata, Notaspis	66
caudata, Sellnickia	66
Ceratozetes	57
Ceratozetidae	57
cervicorna, Crotonia	30
Chambatidae	58
chilensis, Notophthiracarus	26
christineae, Tuparezetes	52
ciliosus, Stomacarus	25
circularis, Tumerozetes	56
clathratus, Magellozetes	58
clavasetosa, Hermanniella	38
clavata, Topalia	55
Clavazetes	52
colliger, Neotocepheus	52
communis, Totobates	64
Compactozetes	53
concavus, Holonothrus	31
conjuges, Scheloribates	67
connexa, Zygoribatula	66
consimilis, Neseutegaues	54
Convergoppia	42
cophinaria, Crotonia	30
coriaceus, Alaskozetes	34
coriaceus, Carabodes	36
Cosmochthoniidae	27
Cosmochthonius	27
covarrubias, Loboppiia	46
covarrubias, Oppia	46
crassa, Macrogena	58
crusseta, Acutoppia	40
crusseta, Operculoppia	40
Crassoribatula	65
crassus, Scheloribates	68
crispus, Trimalaconothrus	32
Crotonia	29
Crozetidae	29
crozetensis, Austroppia	41
crozetensis, Halozetes	35
crozetensis, Oribata	59
Cryptobothria	59
cryptonatus, Pedrocortesella	37
catarae, Lanceoppia	45
cucullatum, Hoplophora	26
Cultroribula	39
cupidata, Crotonia	30
curviseta, Pseudotocepheus	53
curviseta, Austrocarabodes	29
curviseta, Eutegaues	54
cuspidatus, Parafurcobates	58
Cuspitegula	62
Cymbaeremaevidae	33
dalentii, Tripiloppia	50
Damaeolidae	37
Damaecosoma	43
Damaeus	35
decorus, Clavazes	52
delicatissimus, Plenotocepheus	53
dentata, Suctobelbalia	51
dentatus, Notocephus	55
dentifer, Edwardzetes	57
dentonyx, Subphallopia	68, 69
diaphora, Campbellopia	42
diaphora, Oppia	42
discifer, Totobates	63
discors, Setobates	68
disjuncta, Oppia	48
disjuncta, Pravoppia	49
distentius, Neseutegaues	55
diversa, Pseudoceratoppia	40
diversisetosa, Hermanniella	38
dubia, Oppiella	48
edwardsi, Oribata	57
Edwardzetes	57
etamellata, Fortuyinia	34
elegans, Austrocarabodes	36
elegans, Totobates	64
elegans, Zeanotheus	32
emarginatus, Scapheremaeus	34
Eniochthoniidae	27
ensifer, Carabodes	36
Eremaeus	48
Eremulidae	37
Eremulus	37
Euphthiracaridae	25
Eutegaevae	53
Eutegaues	54
evansi, Belloppia	42
ewingi, Lanceoppia	45
excavatus, Thypochthonius	33
falcata, Suctobelbalia	51
feideri, Lanceoppia	45
ferox, Maorizetes	39
fimbriatissimus, Linochthonius	27
flagellatus, Novonothrus	32, 33
flagellatus, Scheloribates	68
flagellifer, Eremulus	37
flagellifer, Magnobates	63
flagellifer, Ermithues	37
flagellifer, Magnobates	63
foliata, Phylhermannia	28
foliatus, Holonothrus	30, 31
forsslundi, Tripiloppia	50
Fortuyinia	34
Fortuyiniidae	34
Fosseremus	37
Fossonothrus	31
foveolatus, Pseudotocephus 53
foveolatus, Rostrozetes 63
fragilis, Peloribates 63
furcatus, Austrachipteria 56

GALUMNA 61
GALUMNIDAE 60
giganteus, Austrachipteria 56
Globoppia 43
gracilis, Ceratozetes 57
grandis, Austrachipteria 57
grandis, Ramsayellus 60
grandis, Zeolandobates 60
grandjeani, A. antarcticus 34
grandjeani, Solenoppia 50
Grandjeanobates 67
granalata, Hermannia 38
granulata, Topalia 53
gressitti, Globoppia 43
Gressittoppia 43
gymn n o n o t u s, Pedrocortesella 38

HAA RLOVI, Lanceoppia 45
Halozetes 34
hamobatoi des, Ceratozetes 57
Hamoppia 43
HAPLOZETIDAE 62
hartensteinii, Brachioppiella 42
Heminothrus 28
Hermannia 28, 38
Hermanniella 38
HERMANNIELLIDAE 38
HERMANNIIDAE 28
hexapili, Lanceoppia 44, 46
higginsi, Brachioppiella 42
Holonothrus 30
Hoplophora 26
Hoplophorella 26
Hydrozetes 39
HYDROZETIDAE 39
Hypochthoniella 27
HYP OCHTHONIIDAE 27
Hypochthonius 27

idem, Liochthonius 27
Incabates 67
indifferens, Malaconothrus 31
indistinctus, Tumerozetes 56
Indotritia 25
indusiatu s, Malaconothrus 31
Ingella 65
insculpta, Damaceosoma 43
Insculptoppia 43
insularis, Scapheremaeus 34
intermedia, Globoppia 43
intermedius, Antarctozetes 59
intermedius, Halozetes 55

jacoti, Lanceoppia 45
jelevae, Acutoppia 40
jugatus, Brachychochthonius 26
juncta, Notaspis 39

karppineni, Membranoppia 47
keriensis, Malaconothrus 31
keriensis, Scheloribates 68
kmltlei, Lanceoppia 45
krakatauensis, Tritia 25
krivoluzkyi, Membranoppia 47
kunsti, Opeculoppia 47

laciniatum, Damaeosoma 37
laciniatus, Fosseremus 37
lacustris, Notaspis 39
levigata, Hoplophora 26
lamellata, Austrachipteria 56
Lamellobates 62
Laminoppia 43
Lanceoppia 41, 44, 46
lata, Cultroribula 39
latipes, Zetes 67
latocula, Pedrocortesella 38
latohumeralis, Campbellobates 67
latus, Fosseremus 31
latus, Neseutegaeus 45
latus, Totobates 64
Lauritzenia 62
lebruni, Paroppia 48
lemae, Hydrozetes 39
Liebstadia 65
ligamentifer, Stomacarus 25
Liochthonius 27
Liodes 40
LIODIDAE 40
lionsi, Hamoppia 43
 lobatus, Austrachipteria 57
Loboppia 46
longihulbula, Crotonia 30
longicaulis, Antarctozetes 59
longicula, Amerioppia 41
longicurva, Suctobelba 51
longipilosus, Maculobates 65
longipluma, Acrogalumna 60
longipluma, Lauritzenia 62
longiplumus, Oribates 60
longiporosus, Maculobates 65
longirostrum, Trimalaconothrus 32
longisetosa, Hermanniella 38
longus, Maculobates 65
longoptichus, Oribates 64
luteomarginata, Pedrocortesia 38
luteomarginatus, Maculobates 65
luteus, Antarctozetes 59
luteus, Hypochthonius 27
Maciluella 46
macquariensis, Halozetes 35
macrodentatus, Austrachipteria 57
Macrogena 57
Macquariella 39
Macquarioppia 39
macronyx, Totobates 64
maculatus, Austrocarabodes 36
maculatus, Phthiracarus 26
Maculebates 64, 65
maculosa, Crassoribatula 65
maerkeli, Lanceoppia 45
magellanis, Oppia 41
Magellozetes 58
magna, Zygoribatula 66
magniseta, Pterozetes 55
magnus, Maculobates 66
magnus, Setobates 68
mamillatus, Setobates 68
maerkeli, Lanceoppia 45
major, Platynothrus 29
Malaconothrusidae 31
Malaconothrus 31
manzanoensis, Punctoribates 60
maoriensis, Scheloribates 68
Maorizetes 39
Maorizetidae 39
marina, Fortuynia 33
marina, Notaspis 34
marinus, Halozetes 35
maximus, Austrachipteria 57
medicus, Ceratozetes 57
medius, Setobates 68
membraniger, Eutegaeus 54
Membranoppia 47
memorabilis, Pterozetes 55
menkei, Lanceoppia 45
Mesotritia 25
Metabelba 35
Metrioppiidae 39
microclava, Heminothrus 29
microclava, Pedrocortesella 38
microfissum, Galumna 61
Miocaproopia 47
microseta, Totobates 64
microsetosa, Hermanniella 38
microsetosa, Pseudoceratoppia 40
Microtritia 25
Microzetidae 62
mihelcici, Oppia 49
mihelcici, Rhaphoppia 49
minimus, Phthiracarus 25
minimus, Totobates 64
minor, H. marinus 35
minor, Maculobates 66
minor, Setobates 68
minor, T. velatus 36
minus, Damaeosoma 47
minus, Miocapropia 47
minutissima, Hypochthoniella 27
minutissima, Miocapropia 47
minutissimus, Eniochthonius 27
minutissimus, Hypochthonius 27
minutus, Cepheus 69
minutus, Pedunculozetes 58
minutus, Scutovertex 69
mirabilis, Pedrocortesia 38
Miopopa 47
mollicoma, Pienotocephaus 52, 53
mollis, Phyllhermannia 28
monodactyla, Cryptobothria 59
monodactyla, Macrogena 57, 58
monodactylus, Nesopelops 69
monodactylus, Notrus 31
monodactylus, Paraphysobates 62
monodactylus, Physobates 62
moresonensis, Brachioptia 43
moritzi, Baloppia 41
moritzi, Lanceoppia 41
Mycrothrus 33
multipilosa, Austrogreta 40
Mycobatidae 59
Mycocetes 59
nana, Nanhermannia 28
nana, Notrus 28
Nanhermannia 28
Nanhermanniidae 28
nasalis, Micronothrus 33
nasalis, Suctobelba 51
Neomycothrus 59
Neoribates 61
Neotrichozetes 64
Neotrichozetidae 64
neotrichus, Protophthiracarus 26
nervosus, Onychobates 61
Neotrichozetes 54
Nesopelops 69
Nesopopa 47
newelii, Oppia 49
newelii, Setuloppia 50
nidicola, Glohoppia 43
nidicola, Onychobates 60
niger, Compactozetes 53
nigricans, Liodes 40
nigroclava, Pedrocortesella 38
Nodocephaus 55
nodosa, Zeasuctobelba 52
nodosus, Austrocarabodes 36
nondivisa, Suctobelba 51
<table>
<thead>
<tr>
<th>Taxon</th>
<th>Species</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>pulcher, Holonothrus</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>pulchra, Pedrocortesella</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>pumilis, Tumerozetes</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>punctatus, Nesopelops</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>punctatus, Pelops</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>punctatus, Pseudotocepheus</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>punctillata, Suctobelbila</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>Punctoribates</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>punctum, Oribates</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>punctum, Punctoribates</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>pupuensis, Novonothrus</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>pyramidalis, Trizetes</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>pyriformis, Machuelia</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>quadricarinata, Notaspis</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>quadricarinata, Quadroppia</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>quadridentata, Austrogneta</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>quadridentatus, Austrachipteria</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>quadripertitus, Fosseremus</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>Quadroppia</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>quinquenodosa, Zeasuctobelba</td>
<td>51, 52</td>
<td></td>
</tr>
<tr>
<td>radiatus, Eutegaeus</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>rafaelski, Plezenoppia</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>rafskii, Brachioppiella</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>Ramsayellidae</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Ramsayellus</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>remote, Pergalumna</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>rensformis, Pergalumna</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>reticulata, Crotonia</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>reticulatus, Bulleremaeus</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>Rhaphoppia</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>rigisomata, Lanceoppia</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>rostratus, Angulozetes</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>rostratus, Macronothrus</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>Rostrozetes</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>rotunsubl, Compactozetes</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>rotunsubl, Pedrocortesia</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>rotunda, Porokalumna</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>rotunda, Sandenia</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>rotundirostrum, Lauritzena</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>roubali, Oribates</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>rubra, Phylthermannia</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>rudentiger, Macrogena</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>rudentigera, Americaoppia</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>rufidus, Hypochthonius</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>rugosa, Galumna</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>sacculus, Trimalaconothrus</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>saltaensis, Liochthonius</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>sarekensis, T. velatus</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>scalar, Galumna</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>Scapheremaus</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>Scheloribates</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>Scheloribatidae</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>scheloribatoides, Setobates</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>schuillingi, Allonothrus</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>schusteri, Lanceoppia</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>schweizeri, Lanceoppia</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>sculptus, Suctobelbida</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>Scutovertex</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>Setobates</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>Setuloppsia</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>sexpilosus, Pedrocortesella</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>sexsetosa, Pseudoceratoppia</td>
<td>39, 40</td>
<td></td>
</tr>
<tr>
<td>seydi, Lanceoppia</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>shealsi, Belloppia</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>sicafer, Sicaxyllobates</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>sicafer, Xylobates</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>Sicaxyllobates</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>silvestris, Nothrus</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>silvestris, Pergalumna</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>similis, Liebstda</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>similis, Notaspis</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>sitnikovae, Membranoppia</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>skottsbergeii, Platynothrus</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>Solenoppsia</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>spinatus, Neseutegeaeus</td>
<td>54, 55</td>
<td></td>
</tr>
<tr>
<td>spinipes, Tikizetes</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>spinosa, Oppia</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>spinulosa, Notaspis</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>stagardi, Capilibates</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>stellifer, Capitibequa</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>Stomacarus</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>strenzkei, Lanceoppia</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>striata, Macquariella</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>striata, Macquarioppia</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>stylesi, Eutegaeus</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>subcornigera, Suctobelba</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>Subphallopia</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>sucii, Insuloppia</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>Suctobelbæ</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>Suctobelbidae</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>Suctobelbida</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>suecica, B. jugatus</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>suarmericana, Oxyoppia</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>taberlyi, Solenoppsia</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>targioni, Nothrus</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>tarraswahbergii, Tripiloppia</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Tectocephelidae</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>Tectocephhus</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>tectorum, Hypochthonius</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>Genus</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Tegeocranus</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>Tegoribatidae</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>tenuiclavus, Platynothrus</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>tenuicoma, Nanhermannia</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>tenuiseta, Pseudotocepheus</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>termophilus, Tutorozetes</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>terricola, Zygoribatula</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>testacea, Mesotritia</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>thamdrupi, Hamoppia</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>theleproctus, Notaspis</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>thori, Lanceoppia</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>Tikizetes</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>Tikizetidae</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>tonkine, Trimalaconothrus</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Topalia</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>Totobates</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>Traegardhi, Acaronychus</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Traegardhi, Tripiloppia</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>travel, Solenoppia</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>traversus, Heminothrus</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>Trhypochthonidae</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>Trhypochthonius</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>tridentatus, Neomycobates</td>
<td>59, 60</td>
<td></td>
</tr>
<tr>
<td>trigona, Notaspis</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>Trimalaconothrus</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>trinodosa, Zeasuctobelba</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>Tripiloppia</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Tristani, Stomacarus</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Tritia</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Trizeses</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>tuberculata, Crotonia</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>tuberculatus, Bulleremaeus</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>Tutorozetes</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>Tumerozetidae</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>Tuparezetes</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>Tuparezetidae</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>turki, Lanceoppia</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>Tutorozetes</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>tuxeni, Nesoppia</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>tuxeni, Oppia</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>unguifera, Crotonia</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>vanderhammeni, Lanceoppia</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>vaneki, Lanceoppia</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>variabilis, Carabodes</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>velala, Topalia</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>velatus, Tectocepheus</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>velatus, Tegeocranus</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>ventrisetosa, Macuella</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>vulgats, Maculobates</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>walkeri, Brachyoppiella</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>wallworki, Belloppia</td>
<td>41, 42</td>
<td></td>
</tr>
<tr>
<td>watsoni, Stomacarus</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Westwoodia</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>willmanni, Lanceoppia</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>winkleri, Arcoppia</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>woodringi, Lanceoppia</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>woolleyi, Amerioppia</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>Xylobates</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>zealandica, Mitroppia</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>zealandicus, Malaconothrus</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>zealandicus, Scheloribates</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>Zeanothrus</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Zeascheloribates</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>Zeasuctobelba</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>Zetes</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>Zygoribatula</td>
<td>66</td>
<td></td>
</tr>
</tbody>
</table>
The Australian Journal of Zoology is a journal of international standard for the publication of the results of original research in all branches of zoology. Papers such as taxonomic revisions which cannot be accommodated by the journal because of their length are published as separates in the Journal's Supplementary Series. Critical review articles are also considered. All papers are refereed.

The Journal is one of nine published by the Commonwealth Scientific and Industrial Research Organization with the co-operation of the Australian Academy of Science.

All inquiries and manuscripts should be forwarded to the Editor-in-Chief, Australian Journal of Zoology, 314 Albert Street, East Melbourne, Victoria, 3002.

The Notice to Authors is published in the first issue of each volume. Copies are available on request.

Subscription Information

The Australian Journal of Zoology is published six times a year. Annual subscription rates for 1984 are as follows:

<table>
<thead>
<tr>
<th></th>
<th>By surface mail</th>
<th>By airmail</th>
<th>Microfiche</th>
</tr>
</thead>
<tbody>
<tr>
<td>A$120 with supplements</td>
<td>A$132 with supplements</td>
<td>A$40 with supplements</td>
<td></td>
</tr>
<tr>
<td>A$100 without supplements</td>
<td>A$112 without supplements</td>
<td>A$30 without supplements</td>
<td></td>
</tr>
</tbody>
</table>

Order Form

I wish to subscribe to the Australian Journal of Zoology and enclose cheque/money order.

Name ...

Address .. Post Code

Signature .. Date

Your order, accompanied by prepayment, should be sent to the 'Collector of Moneys, CSIRO', Editorial and Publications Service, 314 Albert Street, East Melbourne, Victoria, 3002 Australia.
This proforma data sheet may be photocopied as required; copyright is waived. Use the back for data such as host records.

This base-map is used in the Fauna of N.Z. for recording the distribution of collection localities. The small grid divisions are 10 minutes of arc by latitude and longitude.

V. R. Ward, Government Printer, Wellington, New Zealand—1985
Fauna of New Zealand

Number 7

Cryptostigmata
(Arachnida: Acari)
– a concise review

M. Luxton
THE NEW ZEALAND SUBREGION
(excludes Lord Howe, Norfolk, and Macquarie
islands except in the context of extralimital
zoogeography)
Area codes and boundaries proposed by Crosby et al. (1976) for use with specimen locality data.
INTRODUCTION

This series of occasional publications has been established with two major objectives: to encourage those with expert knowledge of elements in the New Zealand fauna to publish concise yet comprehensive accounts; and to provide a means of identification accessible to the non-specialist. It will deal largely with non-marine invertebrates, since the vertebrates are well documented, and marine forms are covered by the series Marine Fauna of New Zealand.

Contributors should discuss their intentions with an appropriate member of the Editorial Advisory Group or with the Series Editor before commencing work (for names and addresses, see page ii). All necessary guidance will be given.

Persons wishing to receive issues of the Fauna should address inquiries to the Publications Officer, Science Information Publishing Centre, DSIR, P.O. Box 9741, Wellington, New Zealand, who will maintain standing orders in three categories, as follows. 'A' — all numbers will be sent, with invoice, as soon after publication as possible. 'B' — essentially as for 'A', but invoiced copies will be sent only for such numbers as are within a nominated field of interest (e.g., insects only, mites only). 'C' — updated lists of numbers in print will be sent, from which requirements may be ordered. All orders should be accompanied by payment in full, i.e., including packing and postage.

IN PRINT

IN PREPARATION (and scheduled for early publication)

Arachnida Acari — Ixodidae, by G. W. Ramsey.

Insecta Coleoptera — Carabid subfamilies, by P. M. Johns; Key to families, by J. C. Watt; Staphylinid subfamilies, by P. Hammond; Diptera — Calliphorinae, by J. P. Dear; Hemiptera — Pentatomidae, by C. F. Butcher; Psocococcidae, by J. Cox; Psyllidae, by P. C. Dale; Hymenoptera — Ambrosiinae, by I. Naumann; Aoideae, by B. J. Donovan; Chalcidoidea (in several parts), by J. S. Noyes and E. W. Valentine; Key to families, by E. W. Valentine; Pomphidae, by A. C. Harris; Lepidoptera — Catalogue of types, by J. S. Dugdale; Nepticulidae, by C. Wilkinson & H. Donner; Neuroptera, by K. A. J. Wise; Protura, by S. L. Tuxen; Thysanoptera — Tubulifera, by L. A. Mound & A. K. Walker.

Onychophora, by H. Ruhberg.

*Single-copy mailing charges: NZ$0.60 for local subscribers; NZ$1.50 for surface mail overseas. Charges for airmail and bulk mailings notified on request.