Open Access Open Access  Restricted Access Subscription or Fee Access


DOI: http://dx.doi.org/10.11646/bde.39.1.14

Is phenotypic variation reflected in habitat connectivity? A morphometric comparison of two moss species from insular and continuous habitats of the Amazon Basin

ANNA KELLY N. C. DA SILVA, CRISTIAN DE S. DAMBROS, MARTA R. PEREIRA, CHARLES E. ZARTMAN

Abstract


The influence of habitat connectivity on dispersal limitation and genetic structure in bryophytes is relatively well researched; however, little is known as to how habitat insularity may impact phenotypic divergences on a continental scale. Here we conduct a morphometric analysis of five quantitative gametophytic traits from two Amazonian Calymperaceae (Syrrhopodon helicophyllus and Calymperes lonchophyllum) from contrasting habitats (Amazonian white-sands and terra firme forests) to test whether increased habitat insularity is correlated with greater inter-population divergence in phenotypic variation. We also test how much of the phenotypic variation among the two taxa is explained by three environmental variables (altitude, mean annual temperature and mean annual precipitation). The Amazonian species endemic to continuous terra-firme forest (C. lonchophyllum) revealed greater geographic structure in phenotypic variation that that of its counterpart (S. helicophyllus) of more insular white-sands forest habitats. Furthermore, environmental variables explained more of the phenotypic variation among populations of S. helicophyllus than for those of C. lonchophyllum. We attempt to explain these patterns as a result of either historical factors, divergent adaptive reproductive strategies, phenotypic plasticity and/or differences in the spatial scales of sampling effort among the two species. Understanding the role of habitat heterogeneity on speciation processes is a priority for understanding the origin and maintenance of floristic richness in the Amazon Basin. We propose that bryophyte studies highlighting morphometric data coupled with population genetic structure would greatly contribute to our understanding of evolutionary processes in this megadiverse Biome.


Keywords


Amazon, bryophyte, speciation, morphometrics

Full Text:

PDF/A (1MB)

References


Alvarenga, L.D.P., Pôrto, K.C., Coelho, M.L.P. & Zartman, C.E. (2016) How does reproductive strategy influence demography? A case study in the tropical, unisexual epiphyllous moss Crossomitrium patrisiae? American Journal of Botany 103: 1921–1927.

https://doi.org/10.3732/ajb.1600202

Adeney, J.M., Christensen, N., Vicentini, A. & Cohn-Haft, M. (2016) White-sand ecosystems in Amazonia. Biotropica 48: 7–23.

https://doi.org/10.1111/btp.12293

Allen, B. (1994) Moss flora in the Central America Part 1: Sphagnaceae-Calymperaceae. Missouri Botanical Garden, 242 pp.

Anderson, A.B. (1981) White-Sand Vegetation of Brazilian Amazonia. Biotropica 13: 199–210.

https://doi.org/10.2307/2388125

Armbruster, W.S., Pélabon, C., Bolstad, G.H. & Hansen, T.F. (2014) Integrated phenotpyes: understanding trait covariation in plants and animals. Philosophical Transactions of the Royal Society B 369: 20130245.

https://doi.org/10.1098/rstb.2013.0245

Armbruster, W.S., Di Stilio, V.S., Tuxill, J.D., Flores, T.C. & Velasquez Runk, J.L. (1999) Covariance and decoupling of floral and vegetative traits in nine neotropical plants: A re-evaluation of Berg’s correlation-pleides concept. American Journal of Botany 86: 39–55.

https://doi.org/10.2307/2656953

Belinchón, R., Harrison, P.J., Mair, L., Várkonyi, G. & Snäll, T. (2017) Local epiphyte establishment and future metapopulation dynamics in landscapes with different spatio-temporal properties. Ecology 98: 741–750.

https://doi.org/10.1002/ecy.1686

Berg, R.L. (1959) A general evolutionary principle underlying the origino f developmental homeostasis. American Naturalist 93: 103–105.

https://doi.org/10.1086/282061

Berg, R.L. (1960) The ecological significance of correlation plêiades. Evolution 14: 171–180.

https://doi.org/10.2307/2405824

Black, G.A., Dobzhansky, T. & Pavan, C. (1950) Some attempts to estimate species diversity and population density of trees in Amazonian forests. Botanical Gazette 111: 413–425.

https://doi.org/10.1086/335612

Bradshaw, A.D. (1965) Evolutionary significance of phenotypic plasticity in plants. In: Caspary, E.M. & Thoday, J.M. (Eds.) Advances in Genetics. Academic Press, New York, pp.115–155.

https://doi.org/10.1016/s0065-2660(08)60048-6

Braga, I.S. (1979) Subdivisão Fitogeográfica: Tipos de Vegetação e Inventário Florístico da Floresta Amazônica. Supl. da Rota Amazônica pp. 570–578.

https://doi.org/10.1590/1809-43921979094s053

Burghardt, M. & Gradstein, R. (2008) A revision of Tylimanthus (Acrobolbaceae, Marchantiophyta) in tropical America, Africa, Macaronesia. Fieldiana 47: 199–210.

https://doi.org/10.3158/0015-0746-47.1.199

Buryová, B. & Shaw, A.J. (2005) Phenotypic plasticity in Philonotis fontana (Bryopsida: Bartramiaceae). Journal of Bryology 27: 13–22.

https://doi.org/10.1179/174328205X40545

Cano, M. Werner, O., & Guerra, J. (2006) A morphometric and molecular study in Tortula subulata complex (Pottiaceae, Bryophyta). Botanical Journal of the Linnean Society 149: 333–350.

https://doi.org/10.1111/j.1095-8339.2005.00456.x

Carnerio Filho, A., Schwartz, D., Tatumi, S.H. & Rosique, T. (2002) Amazonian paleodunes provide evidence for drier climate phases during the Late Pleistocene–Holocene. Quaternary Research 58: 205–209.

https://doi.org/10.1006/qres.2002.2345

Chalcoff, V.R., Ezcurra, C. & Aizen, M.A. (2008) Uncoupled Geographical Variation between leaves and flowers in a South-Andean Proteaceae. Annals of Botany 102: 79–91.

https://doi.org/10.1093/aob/mcn057

Coleman, J.S., McConnaughay, K.D.M. & Ackerly, D.D. (1994) Interpreting phenotypic variation in plants. Trends in Ecology and Evolution 9:187–190.

https://doi.org/10.1016/0169-5347(94)90087-6

Costa, F.M. (2012) Ilhas de Campinarana de paisagem determina a riqueza e a estrutura e composição das plantas? Master Thesis: INPA, Manaus, pp. 82.

Crum, H.A. (1972) The geographic origins of the mosses of north America’s eastern decíduos forest.J. Hattori. Bot. Lab. 35:269–298.

Daly, D.C., Silveira, M., Medeiros, H., Castro, W. & Obermuller, F.A. (2016) The white-sand vegetation of Acre, Brazil. Biotropica 48: 81–89.

https://doi.org/10.1111/btp.12307

Damasco, G., Vicentini, A., Castilho, C.V. Pimental, T.P. & Nascimento, H.E.M. (2013) Disentangling the role of edaphic variability, flooding regime and topography of Amazonian white-sand vegetation. Journal of Vegetative Science 24: 384–394.

https://doi.org/10.1111/j.1654-1103.2012.01464.x

Dexter, K.G., Lavin, M., Torke, B.M., Teyford, A.D., Kursar, T.A., Coley, P.D., Drake, C., Hollands, R. & Pennington, R.T. (2017) Dispersal assembly of rain forest tree communities across the Amazon basin. Proceedings of the National Academy of Sciences.

Dick, C.W. & Heurtz, M. (2008) The complex biogeographic history of a widespread tropical tree species. Evolution 62: 2760–2774.

https://doi.org/10.1111/j.1558-5646.2008.00506.x

Feldberg, K., Schneider, H., Stadler, T., Schafer-Verwimp, A., Schmidt, A.R. & Heinrichs, J. (2014) Epiphytic leafy liverworts diversified in angiosperm-dominated forests. Scientific Reports.

https://doi.org/10.1038/srep05974

Fisher, K.M., Wall, D.P., Yip, K.L. & Mishler, B.D. (2007) Phylogeny of the Calymperaceae with a rank-free systematic treatment. The Bryologist 110: 46–73.

https://doi.org/10.1639/0007-2745(2007)110[46:POTCWA]2.0.CO;2

Fisher, K.M. (2011) Sex on the edge: Reproductive patterns across the geo- graphic range of the Syrrhopodon involutus (Calymperaceae) complex. The Bryologist 114: 674–685.

https://doi.org/10.1639/0007-2745-114.4.674

Fine, P.V.A., Daly, D.C., Munoz, G.V., Mesones, I. & Cameron, K.M. (2005) The contribution of edaphic heterogeneity to the evolution and diversity of Bursuraceae trees in the western Amazon. Evolution 59: 1464–1478.

https://doi.org/10.1554/04-745

Fine, P.V.A. & Baraloto, C. (2016) Habitat endemism in white-sand forests: Insights into the mechanisms of lineage diversification and community assembly of the Neotropical flora. Biotropica 48: 24–33.

https://doi.org/10.1111/btp.12301

García-Villacorta, R., Dexter, K.G. & Pennington, T. (2016) Amazonian White-sand forests show strong floristic links with surrounding oligotrophic habitats and the Guiana Shield. Biotropica 48: 47–57.

https://doi.org/10.1111/btp.12302

Gratani, l. (2014) Plant phenotypic plasticity in response to environmental factors. Advances in Botany.

https://doi.org/10.1155/2014/208747

Hanski, I. (1998) Metapopulation dynamics. Nature 396: 41–49.

https://doi.org/10.1038/23876

Hedenäs, L. & Eldenäs, P. (2007) Cryptic speciation, habitat differrntiation and geography I. Hamatocaulis vernicosus (Calliergonaceae, Bryophyta). Plant Systematics and Evolution 268: 131.

https://doi.org/10.1007/s00606-007-0529-y

Heegaard, E. (1997) Morphological Variation within Andreaea blyttii in relation to the Environment on Hardangervidda, Western Norway: A Quantitative Analysis. The Bryologist 100: 308–323.

Heinrichs, J.M. (2002) A taxonomic revision of Plagiochila sect. Hylacoetes, sect. Adiantoidae and sect. Fuscoluteae in the Neotropics with a preliminary subdivision of Neotropical Plagiochilaceae into nine lineages. Bryophytorum Bibliotheca 58: 1–184.

Herrera, C.M., Castellanos, M.C. & Medrano, M. (2006) Geographical context of floral evolution: towards an improved research programme in floral diversification. In: Harder, L.D. & Barrett, S.C.H. (Eds.) Ecology and Evolution of Flowers. Oxford: Oxford University Press, 278–294.

Herrera, C.M., Cerdá, X., Garcia, B.M. (2002) Floral integration, phenotypic covariance structure and pollinator variation in bumblebee-pollinated Helleborus foetidus. Journal of Evolutionary Biology 15: 108–121.

https://doi.org/10.1046/j.1420-9101.2002.00365.x

Hutsemékers, V., Vieira, C.C., Ros, R.M., Huttunen, S. & Vanderoorten, A. (2012) Morphology informed by phylogeny reveals unexpected patterns of species differentiation in the aquatic moss Rhynchostegium riparioides. I. Molecular Phylogenetics and Evoution 62: 748–755.

https://doi.org/10.1016/j.ympev.2011.11.014

Laenen, B., Machas, A., Gradstein, S.R., Shaw, B., Patiño, J., Desamore, A., Goffinet, B., Cox, C.J., Shaw, J. & Vanderpoorten, A. (2016) Geographical range in liverworts: Does sex really matter? Journal of Biogeography 43: 627–635.

https://doi.org/10.1111/jbi.12661

Lewis, L.R., Behling, E., Gousse, H., Qian, E., Elphick, C.S., Lamarre, J., Bêty, J., Liebezeit, J., Rozzi, R. & Goffinet, B. (2014) First evidence of bryophyte diaspores in the diaspores in the plumage of transequatorial migrant birds. PeerJ 2: e424.

Lande, R. (1988) Genetics and demography in biological conserva- tion. Science 241: 1455–1460.

https://doi.org/10.1126/science.3420403

Lisboa, R.C. (1976) Estudos sobre a vegetação das campinas amazonicas. Brioecologia de uma campina amazonica. Acta Amazonica 6: 171–191.

Löbel, S. & Rydin, H. (2009) Dispersal and life-history strategies in epiphyte metacommunities: alternative solutions to survival in patchy, dynamic landscapes. Oecologia 161: 569–579.

https://doi.org/10.1007/s00442-009-1402-1

Luna, E. & Velasco, G.G. (2008) Morphometrics and the identification of Braunia andrieuxii and B. secunda (Hedwigiaceae, Bryopsida). Systematic Botany 33: 219–228.

https://doi.org/10.1600/036364408784571608

Mantel, N. (1967) The detection of disease cluster in a generalized regression approach. Cancer Research 27: 209–220.

Marí, M.L.G., Toledo, J.J., Nascimento, H.E.M. & Zartman, C.E. (2016) Regional and Fine Scale Variation of Holoepiphyte Community Structure in Central Amazonian White-Sand Forests. Biotropica 48: 70–80.

https://doi.org/10.1111/btp.12300

McCormick, M.K. & Jacquemyn, H. (2014) What constrains the distribution of orchid populations? New Phytologist 202: 392–400.

https://doi.org/10.1111/nph.12639

McDaniel, S. & Shaw, A.J. (2002) Phylogeographic structure and cryptic speciation in the trans-antarctic moss Pyrrhobryum mnioides. Evolution 57: 205–215.

https://doi.org/10.1554/0014-3820(2003)057[0205:PSACSI]2.0.CO;2

Medina, R.G., Barcellos, S.A., de Carvalho Victoria, F., de Albuquerque, M.P., Pereira, A.B. & Stefenon, V.M. (2015) Evidence of morphometric differentiation among Antarctic moss populations as a response to local microenvironment. Acta Botanica Brasilica 29: 383–390.

https://doi.org/10.1590/0102-33062014abb0034

Pereira, M.R., de S. Dambros, C. & Zartman, C.E. (2013) Will the real Syrrhopodon leprieurii please stand up? The influence of topography and distance on phenotypic variation I a widespread Neotropical moss. The Bryologist 113: 58–64.

https://doi.org/10.1639/0007-2745-116.1.058

Pereira, M.R., Dambros, C.S. & Zartman, C.E. (2016) Prezygotic resource-allocation dynamics and reproductive trade-offs in Calymperaceae (Bryophyta). American Journal of Botany 103: 1–9.

https://doi.org/10.3732/ajb.1600240

Pharo, E.J. & Zartman, C.E. (2007) Bryophytes in a changing landscape: The hierarchical effects of habitat fragmentation on ecological and evolutionary processes. Biological Conservation 135: 315–325.

https://doi.org/10.1016/j.biocon.2006.10.016

Prance, G.T. & Lovejoy, T.E. (Eds.) (1985) Key Environments-Amazonia. Pergamon Press, Oxford, 442 pp.

Proctor, M.C.F & Smith, A.J.E. (1995) Ecological and system-atic implications of branching patterns in bryophytes. In: Hoch, P.C. & Stevenson, A.G. (Eds.) Experimental and Molecular Approaches to Plant Biosystematics. Missouri Botanical Garden, St. Louis, pp. 87–110.

R Development Team. (2011) A language and environment for statistical computing. Vienna, R Foundation for Statistical Computing.

Reese, W.D. (1993) Calymperaceae. Flora Neotropica 58: 1–102.

Reese, W.D. (1987) World ranges, implications for patterns of historical dispersal and speciation, and comments on phylogeny of Syrrhopodon (Calymperaceae). Memoirs of the New York Botanical Gardens 45: 426–445.

Reese, W.D. & Griffin, D. (1976) Syrrhopodon annotinus (Musci; Calymperaceae), a new species from Amazonass, Brazil. The Bryologist 79: 517–520.

https://doi.org/10.2307/3241951

Sastad, S.M., Pedersen, B. & Digre, K. (1999) Habitat-specific genetic effects on growth rate and morphology across pH and water-level gradients within a population of the moss Sphagnum angustifolium (Sphagnaceae). American Journal of Botany 12: 1687–1698.

https://doi.org/10.2307/2656667

Schuster, R. (1988) Ecology, reproductive biology and dispersal of Hepaticae in the tropics. Journal of the Hattori Botanical Laboratory 64: 237–269.

Schofield, W.B. & Crum, H.A. (1972) Disjunctions in bryophytes. Annals of Missouri Botanical Gardens 59: 174–202.

https://doi.org/10.2307/2394752

Shaw, A.J. & Beer, S. (1997) Gametophyte-sporophyte variation and covariation in mosses. Advances in Bryology 6: 35–63.

Shaw, A.J. (2001) Biogeographic patterns and cryptic speciation in bryophytes. Journal of Biogeography 28:253–261.

https://doi.org/10.1046/j.1365-2699.2001.00530.x

Shaw, A.J., Werner, O. & Ros, R.M. (2003) Intercontinental Mediterranean disjunct mosses: Morphological and molecular patterns. American Journal of Botany 90: 540–550.

https://doi.org/10.3732/ajb.90.4.540

Shaw, A. J. & Goffinet, B. (2009) Bryophyte Biology. Cambridge University Press.

Shaw, A.J., Szövényi, P. & Shaw, B. (2011) Bryophyte Diversity And Evolution: Windows Into The Early Evolution Of Land Plants. American Journal of Botany 98: 352–369.

https://doi.org/10.3732/ajb.1000316

Silva, M.P.P. & Pôrto, K.C. (2013) Bryophyte communities along horizontal and vertical gradients in a human-modified Atlantic Forest remnant. Botany 91: 155–166.

https://doi.org/10.1139/cjb-2012-0194

Sneath, P. & Sokal, R. (1973) Numerical Taxonomy: the principles and practice of numerical classification. San Fransico, CA. W.H. Freeman.

Stanton, D.E. & Reeb, C. (2016) Morphogeometric approaches to non-vascular plants. Frontiers in Plant Sciences 7: 916.

https://doi.org/10.3389/fpls.2016.00916

Stropp, J., Van Der Sleen, P., Assuncão, P.A., Da Silva, A.L. & ter Steege, H. (2011) Tree communities of white-sand and terra-firme forests of the upper Rio Negro. Acta Amazonica 41: 521–544.

https://doi.org/10.1590/S0044-59672011000400010

ter Steege, H., Pitman, N.C.A., Sabatier, D., Baraloto, C., Salomão, R.P., Guevara, J.E., Phillips, O.L., Castilho, C.V., Magnusson, W.E., Molino, J.F., Monteagudo, A., Núñez Vargas, P., Montero, J.C., Feldpausch, T.R., Coronado, E.N., Killeen, T.J., Mostacedo, B., Vasquez, R., Assis, R.L., Terborgh, J., Wittmann, F., Andrade, A., Laurance, W.F., Laurance, S.G., Marimon, B.S., Marimon Jr, B.H., Guimarães Vieira, I.C., Amaral, I.L., Brienen, R., Castellanos, H., Cárdenas López, D., Duivenvoorden, J.F., Mogollón, H.F., Matos, F.D., Dávila, N., García-Villacorta, R., Stevenson Diaz, P.R., Costa, F., Emilio, T., Levis, C., Schietti, J., Souza, P., Alonso, A., Dallmeier, F., Montoya, A.J., Fernandez Piedade, M.T., Araujo-Murakami, A., Arroyo, L., Gribel, R., Fine, P.V., Peres, C.A., Toledo, M., Aymard, C.G.A., Baker, T.R., Cerón, C., Engel, J., Henkel, T.W., Maas, P., Petronelli, P., Stropp, J., Zartman, C.E., Daly, D., Neill, D., Silveira, M., Paredes, M.R., Chave, J., Lima Filho, D. de A., Jørgensen, P.M., Fuentes, A., Schöngart, J., Cornejo Valverde, F., Di Fiore, A., Jimenez, E.M., Peñuela Mora, M.C., Phillips, J.F., Rivas, G., van Andel, T.R., von Hildebrand, P., Hoffman, B., Zent, E.L., Malhi, Y., Prieto, A., Rudas, A., Ruschell, A.R., Silva, N., Vos, V., Zent, S., Oliveira, A.A., Schutz, A.C., Gonzales, T., Trindade Nascimento, M., Ramirez-Angulo, H., Sierra, R., Tirado, M., Umaña Medina, M.N., van der Heijden, G., Vela, C.I., Vilanova Torre, E., Vriesendorp, C., Wang, O., Young, K.R., Baider, C., Balslev, H., Ferreira, C., Mesones, I., Torres-Lezama, A., Urrego Giraldo, L.E., Zagt, R., Alexiades, M.N., Hernandez, L., Huamantupa-Chuquimaco, I., Milliken, W., Palacios Cuenca, W., Pauletto, D., Valderrama Sandoval, E., Valenzuela Gamarra, L., Dexter, K.G., Feeley, K., Lopez-Gonzalez, G. & Silman, M.R. (2013) Hyperdominance in the Amazonian Tree Flora. Science 342 (6156): 1243092.

https://doi.org/10.1126/science.1243092

Vanderpoorten, A., Hedënas, L. & Jaquemart, A.L. (2003) Differentiation in DNA fingerprinting and morphology among species of the pleurocarpous moss genus Rhytidiadelphus (Hylocomiaceae) Taxon 52: 229–236.

https://doi.org/10.2307/3647391

Veloso, H.P., Filho, A.L.R.R. & Lima, J.C.A. (1991) Classificação da vegetação brasileira, adaptada a um sistema universal. Departamento de Recursos Naturais e Estudos Ambientais, Rio de Janeiro - RJ.

Via, S. & Lande, R. (1985) Genotype-environment interactions and the evolution of phenotypic plasticity. Evolution39: 505–522.

Vitt, D.H. (1991) Distribution patterns, adaptive strategies, and morphological changes of mosses along elevational and latitudinal gradients on south pacific islands. In: Nimis, P.L. & Crovello, T.J. (Eds.) Quantitative Approaches to Phytogeography. Kluwer Academic Publishers, Dorrecht, Netherlands, pp. 205–231.

https://doi.org/10.1007/978-94-009-2063-7_7

Wright, J. (2002) Plant diversity in tropical forests: A review of mechanisms of species coexistence. Oecologia 130: 1–14.

https://doi.org/10.1007/s004420100809

Young, A.G. & Clarke, G.M. (2000) Genetics Demography and Viability of Fragmented Populations. Cambridge Univ. Press, Cambridge, UK.

https://doi.org/10.1017/CBO9780511623448

Yu, Y., Heinrichs, J., Zhu, R.-L. & Schneider, H. (2013) Empirical evidence supporting frequent cryptic speciation in epiphyllous liverworts: A case study of the Cololejeunea lanciloba complex. PLOS one.

Vittoz, P. & Engler, R. (2007) Seed dispersal distances: A typology based on dispersal modes and plant traits. Botanica Helvetica 117: 109–124.

https://doi.org/10.1007/s00035-007-0797-8

Zapata, F. & Jiménez, I. (2012) Species delimitation: Inferring gaps in morphology across geography. Systematic Biology 61: 179–194.

https://doi.org/10.1093/sysbio/syr084

Zartman, C.E, Nascimento, H.E.M., Cangani, K.G., Alvarenga, L.D.P. & Snäll, T. (2012) Fine-scale changes in connectivity affect the metapopulation dynamics of a bryophyte confined to ephemeral patches. Journal of Ecology 100: 980–986.

https://doi.org/10.1111/j.1365-2745.2012.01969.x


Refbacks

  • There are currently no refbacks.


ISSN 2381-9677 (print); ISSN 2381-9685 (online)

Published by Magnolia Press, Auckland, New Zealand