Hymenoptera, Formicidae Latreille, 1809: New records for Atlantic Forest in the state of Rio de Janeiro

Sergio Veiga-Ferreira 1, Guilherme Orsolon-Souza 1 and Antonio José Mayhé-Nunes 2*

1 Universidade Federal Rural do Rio de Janeiro, Programa de Pós-Graduação em Biologia Animal. BR 465 km7. CEP 23890-000. Seropédica, RJ, Brazil.
2 Universidade Federal Rural do Rio de Janeiro, Instituto de Biologia, Departamento de Biologia Animal. BR 465 km7. CEP 23890-000. Seropédica, RJ, Brazil.
* Corresponding author. E-mail: amayhe@ufrrj.br

ABSTRACT: Standardized sample design helped to increase our knowledge on the ant fauna of Brazilian biomes, in particular leaf litter ants of Atlantic Forest. In this study are presented the new records of nine ant species for the state of Rio de Janeiro: Amblyopone armiger Mayr, 1897, A. elongata (Santschi, 1912), Priionopelta punctulata Mayr, 1866, Lachnomyrmex pluannani Borgmeier, 1957, Trachymyrmex iheringi (Emery, 1887), Pachycondyla arhuaca Ford, 1901, P. stigma (Fabricius, 1804), Thaumatomyrmex mutilatus Mayr 1887 and Proceratium brasiliense Borgmeier, 1959. They were captured during three systematic inventories carried out in Tinguá Biological Reserve, in Restinga da Marambaia and in Vista Chinesa Forest Reserve. Winkler’s extractors and pitfall traps were used as sampling techniques to access ant’s fauna.

Ants are known as one of the most diverse and abundant groups of insects in nature. Most known ant species live in the soil and in the leaf litter of tropical forests (Wall and Moore 1999; Silva and Silvestre 2004). Standardized sample design helped to increase our knowledge on the ant fauna of Brazilian biomes, in particular leaf litter ants of Atlantic Forest (see Majer et al. 1997; Delabie et al. 2000; Veiga-Ferreira et al. 2005; Vargas et al. 2007). Association of sampling techniques, such as Winkler’s extractors and pitfall traps (Olson 1991; Bestelmeyer et al. 2000), may sample 75 % of all ant species found in leaf litter, a representative sample for many ecological studies that also allows new records of species.

Our objective in this study was to present new records of nine ant species for the state of Rio de Janeiro, which were captured during three systematic inventories carried out in Tinguá Biological Reserve (Veiga-Ferreira et al. 2005), in Restinga da Marambaia (Vargas et al. 2007) and in Vista Chinesa Forest Reserve. These researches are parts of ant’s fauna inventory for state of Rio de Janeiro, which has been done by Laboratory of Myrmecology of Universidade Federal Rural do Rio de Janeiro (UFRRJ).

We used Winkler’s extractors (eW) to collect ants in all three localities and pitfall traps (pf - plastic pots with 32.5 cm in diameter with 100 ml formalin 3 % as fixer liquid) in two localities: Tinguá Biological Reserve (TBR: eW/pf) – Nova Iguaçu municipality (22°34’ S, 43°24’ W), Vista Chinesa Forest Reserve (VCFR: eW) – Tijuca National Park, Rio de Janeiro municipality (22°58’ S, 43°15’ W) and Restinga da Marambaia (RM: eW/pf) – Rio de Janeiro municipality (23°03’ S, 44°03’ W). Sampling protocol for TBR and VCFR can be found in detail in Veiga-Ferreira et al. (2005), and for RM in Vargas et al. (2007). We distributed 120 pitfall traps over an area of 7,200 m² in RM, 10 m apart from each other. We used 50 Winkler’s extractors in TBR, RM and VCFR in an area of 4,800 m² for each place analyzed, with a distance of at least 50 m between adjacent samples.

To see whether there were previous records of the species in Rio de Janeiro, we checked the taxonomical lists by Kempf (1972) and Brandão (1991), the review by Feitosa and Brandão (2008) on Lachnomyrmex, the review by Baroni-Urbani and De Andrade (2003) on Proceratium, and the review by Jahyny et al. (2007) on Thaumatomyrmex. We identified genera using Bolton’s key (1994), subfamilies based on Bolton (2003) and then, in order to determine the species, we used the keys included in the taxonomical reviews of each genus: Amblyopone and Priionopelta (Brown 1960), Lachnomyrmex (Fernández and Baena 1997; Feitosa and Brandão 2008), Trachymyrmex (Mayhé-Nunes and Brandão 2005), Pachycondyla (Wild 2002; Mackay et al. 2007), Thaumatomyrmex (Kempf 1975; Jahyny et al. 2007) and Proceratium (Brown 1979; Baroni-Urbani and De Andrade 2003). All vouchers specimens were deposited in the Coleção Entomológica Ângelo Moreira da Costa Lima (CECL) at the Biology Institute of UFRRJ.

We found four species, ascribed to four families, which had not been previously recorded for the state of Rio de Janeiro (Veiga-Ferreira et al. 2005). Vargas et al. (2007) collected in RM four more new species, and Feitosa and Brandão (2008) reported another one (Table 1). Out of the seven genera, Priionopelta and Proceratium have not been recorded for the state yet (Table 2).

Subfamily Amblyoponinae

Genus Amblyopone Erichson

Veiga-Ferreira et al. (2005) only recorded for the first time the occurrence of this genus in Rio de Janeiro, but did not identify these species. Vargas et al. (2007) made the first record of Amblyopone armiger Mayr, 1897. We found A. armigera (Mayr; 1897) and A. elongata (Santschi, 1912) in the three localities. The type locality of the former species is the state of Santa Catarina, Brazil, and of the
Table 1. Distribution of nine new records of ant species through sample localities and collecting techniques at state of Rio de Janeiro. Abbreviations: eW = Winkler extractor, pf = pitfall traps, RBT = Reserva Biológica do Tinguá, RFVC = Reserva Florestal da Vista Chinesa, RM = Restinga da Marraiba; * first record of the genus at state of Rio de Janeiro. • Species not known for state of Rio de Janeiro.

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>RBT</th>
<th>RFVC</th>
<th>RM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>eW</td>
<td>pf</td>
<td>eW</td>
</tr>
<tr>
<td>Amblyopone armigera Mayr</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Amblyopone elongata (Santschi)</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Lachnomyrmex pluamanni Borgmeier</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Pachycondyla arhuaca Forel</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Pachycondyla stigma (Fabricius)</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>* Prionopelta punctulata Mayr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Proceratium brasiliense Borgmeier</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Thaumatomyrmex mutilatus Mayr</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>* Trachymyrmex iberigi (Emery)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Later is Nueva Helvécia, in Uruguay, both located between São Paulo, Brazil, and Cordoba, Argentina (Kempf 1972).

Genus Prionopelta Mayr

We collected a single worker of *P. punctulata* Mayr, 1866 in TBR. According to Kempf (1972), the type locality of this species is the state of Paraná; it has also been found in the states of São Paulo and Santa Catarina, Brazil, and in Cordoba, Misiones and Tucumán, Argentina.

Subfamily **Myrmicinae**

Genus Lachnomyrmex Wheeler

Veiga-Ferreira et al. (2005) also found this genus for the first time in Rio de Janeiro, without identifying the species. We collected workers of *L. plaumanni* Borgmeier, 1957 in TBR. There are specimens from this sample deposited in the Museu de Zoologia, Universidade de São Paulo, included in the list of materials examined by Feitosa and Brandão (2008). Its type locality is Nova Teutônia, in the state of Santa Catarina, Brazil, but it also occurs in the states of Paraná and São Paulo (Kempf 1972). Feitosa and Brandão (2008) stated that *L. plaumanni* is distributed from Argentina to southeastern Brazil, at altitudes varying between 400-1,200 m.

Genus Trachymyrmex Forel

Trachymyrmex iberigi (Emery, 1887) is one of the species of the group *iberigi* collected in RM (Vargas et al. 2007), the only record of the group for Rio de Janeiro. This group of species is characterized by antennal scapes that exhibit a small basal lobe (Mayhé-Nunes and Brandão 2005). The genus has a wide Neotropical distribution, but some species are endemic to the Neartic region, occurring from Mexico to the US. *Trachymyrmex iberigi* was restricted to its type locality in São Lourenço, state of Rio Grande do Sul, Brazil (Kempf 1972), but the previously limited distribution of the species, has been extended based on the specimens examined by Mayhé-Nunes and Brandão (2005), and now includes the states of Santa Catarina, São Paulo, Mato Grosso do Sul, Goiás and Brasília.

Subfamily **Ponerinae**

Genus Pachycondyla Fr. Smith

We collected *Pachycondyla arhuaca* Forel, 1901 and *P. stigma* (Fabricius, 1804) in RM. According to Bolton (2003), except for the species originally ascribed to the genus *Pachycondyla*, this genus currently comprises several species that were originally included in other genera of Ponerinae: Mesoponera, Neoponera, Termitopone, Trachymesopus and Wadeura. The type locality of *P. arhuaca* is San Antonio, Sierra Nevada de Santa Marta, Colombia (Kempf 1972), but this species has already been recorded in the Brazilian states of Amazonas, Espírito Santo and Mato Grosso. The type locality of *P. stigma* is not precisely known (South America), but the species has already been confirmed in Argentina (Formosa), Bolivia and the Brazilian states of Amapá, Amazonas, Pará, Rondônia, Mato Grosso, Pernambuco, Goiás and São Paulo (Kempf 1972). The range of *P. stigma* extends from southeastern US to northeastern Argentina and southeastern Asia (Wild 2002).

Subfamily **Proceratinae**

Genus Proceratium Roger

We collected a worker of *P. brasiliense* Borgmeier, 1959 in RM with a Winkler’s extractor. The type locality of the species is Nova Teutônia, in the state of Santa Catarina, Brazil, but it was also reported in the states of São Paulo and Bahia (Baroni-Urbani and De Andrade 2003).

Our data suggest that both Winkler’s extractor and pitfall traps, when used in systematically sample design,
may allow new records of species. However, even if more than one sampling technique is used in an orderly way, some factors related to ant biology may alter sampling efficiency and ants’ records (Wang et al. 2001), such as foraging area, nest distribution and activity levels species. Another important factor that must be highlighted is the need for a more intense sampling effort in the northern region of the state of Rio de Janeiro, in order to assess the ant community in this region, what will possibly lead to new species records that, therefore, will provide a new outlook on species distribution in the state.

Table 2. Distribution of the nine ant species recorded in Rio de Janeiro, through others Brazilian States and South America countries. ARG = Argentina; COL = Colombia; URU = Uruguay; RS = Rio Grande do Sul; SC = Santa Catarina; PR = Paraná; SP = São Paulo; RJ = Rio de Janeiro; MG = Minas Gerais; ES = Espírito Santo; BA = Bahia; PE = Pernambuco; GO = Goiás; MS = Mato Grosso do Sul; MT = Mato Grosso; RO = Rondônia; TO = Tocantins; PA = Pará; AP = Amapá; AM = Amazonas. # = type locality; ? = probable occurrence.

| Ant species | ARG | COL | URU | RS | SC | PR | SP | RJ | MG | ES | BA | PE | GO | MS | MT | RO | TO | PA | AP | AM |
|------------------------------|-----|-----|-----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| *Amblyopone armigera* | x | x | ? | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x |
| *Amblyopone elongata* | x | ? | x | # | x | ? | x | x | x | x | x | x | x | x | x | x | x | x | x | x |
| *Lachnomyrmex elongata* | x | # | ? | ? | x | ? | # | ? | # | x | x | x | x | x | x | x | x | x | x | x |
| *Pachycondyla stigma* | x | # | x | # | x | # | ? | x | x | x | x | x | x | x | x | x | x | x | x | x |
| *Proceratium brasiliense* | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x |
| *Thaumatomyrmex mutilatus* | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x |

Acknowledgments: We thank CNPq and CAPES for the productivity fellowship granted to AJMN and the graduate scholarship granted to GOS. Dr. Helio Ricardo da Silva made valuable criticisms and suggestions.

Literature Cited

