Scirtothrips genus-group in Iran with an unusual new species of Scirtothrips (Thysanoptera: Thripidae)

KAMBIZ MINAEI1,3 & LAURENCE MOUND2

1 Department of Plant Protection, College of Agriculture, Shiraz University, Shiraz, Iran.
2 CSIRO Australian national Insect Collection, Canberra, ACT, Australia. Email: laurence.mound@csiro.au
3 Corresponding author. E-mail: kminaei@shirazu.ac.ir

Abstract

A new species of Scirtothrips Shull from leaves of Tamarix sp. is described and illustrated from southern Iran. Among Scirtothrips species, it is unusual in having two pairs of long pronotal posteroangular setae, and ocellar setae III unusually long. A key is provided to distinguish members of the Scirtothrips genus-group in Iran: Drepanothrips reuteri Uzel, Scirtothrips dorsalis Hood, S. hafezi sp. n. and S. mangiferae Priesner.

Key words: Fars province, new species, Tamarix sp., thrips

Introduction

Masumoto and Okajima (2007) recognized Scirtothrips genus-group with 10 genera, but to these Ng and Mound (2015) added Ajothrips Bhatti and Kenyattathrips Mound and simultaneously placed Sericopsothrips Hood as a synonym of Scirtothrips Shull. Thus 11 genera worldwide are currently recognised in this group and an identification key to these is available (Ng & Mound 2015). Members of this group breed on a wide range of plants, and they appear to feed and oviposit on tissues of the young leaves and fruitlets. Some species are of considerable economic importance as major crop pests around the world (Talekar 1991; Rugman-Jones et al. 2006, 2007) as well as Iran (Minaei et al. 2016).

Up to now in Iran, only two genera of Scirtothrips genus-group have been recorded, including the three species Drepanothrips reuteri, Scirtothrips dorsalis, and S. mangiferae (Minaei 2013; Minaei et al. 2016). In this paper a new Scirtothrips species is described, and an illustrated key provided to the members of this group in Iran together with information about each species from this country.

Full nomenclatural information about Thysanoptera is available on the website ThripsWiki (2018).

Materials and methods

Thrips specimens discussed in this paper were macerated in 3% NaOH solution for 4-5 hours and washed in distilled water before dehydration in a series of alcohol (60%-100%). The specimens were mounted onto slides in Canada balsam. The observations on structure were made using an Olympus BX51 phase-contrast microscope, and photomicrographs and measurements were made using this microscope with DP27 digital camera and cellSens software. Figures 9, 10 and 12 were prepared with a Leica DM2500 microscope with Nomarski illumination, and processed through Automontage software Terminology used in this paper follows Mound and Palmer (1981) and Hoddle and Mound (2003).

The holotype and one male of the new species are deposited in the Natural History Museum, London. Two paratypes (one female and one male) are deposited in the Australian National Insect Collection, CSIRO, Canberra. Most of the other materials are deposited in the collection of the Department of Plant Protection, College of Agriculture, Shiraz University, Shiraz.
Key to species of *Scirtothrips* genus-group from Iran

1. Antennae 6-segmented (Figs. 1, 3); in male abdominal tergite IX with drepanae (Fig. 2) *Drepanothrips reuteri*
 - Antennae 8-segmented (Fig. 11); in male abdominal tergite IX with or without drepanae. 2

2. Pronotum with two pairs of posteroangular setae that are at least 0.4 as long as pronotum median length (Fig. 9); ocellar setae III about 1.7 times as long as distance between posterior ocelli (Fig. 9) *Scirtothrips hafezi* sp. n.
 - Pronotum with posteroangular setae no more than 0.3 as long as pronotum median length (Fig. 4); ocellar setae III about 1.0 times as long as distance between posterior ocelli (Fig. 4) ... 3

3. Abdominal tergites pale with brown area medially; antecostal ridge of tergites and sternites dark; abdominal sternites III–VI with rows of microtrichia present completely across median area ... *S. dorsalis*
 - Abdominal tergites pale without a dark median area (Fig. 5); antecostal ridge pale on tergites and sternites; abdominal sternites with rows of microtrichia restricted to lateral areas ... *S. mangiferae*

Scirtothrips dorsalis Hood

(Fig. 4)

Scirtothrips dorsalis Hood, 1919: 90.

This is a widespread and a frequent pest in countries including the Indian sub-continent, Malaysia, Japan and Australia, as well as being an introduced pest in Israel and Florida. It has been recorded damaging crops as varied as chilies, tea, grapes, and strawberries (Mound & Palmer 1981). There is evidence of molecular diversity within species (Hoddlle *et al.* 2008, Toda *et al.* 2014), and Dickey *et al.* (2015) similarly distinguished nine cryptic species within the *S. dorsalis* complex. The species was recorded for the first time from Iran when a large population was collected in spring and summer of 2015 in citrus orchards of Jahrom, Fars province, southern Iran (Minaei *et al.* 2016). This species causes distortion of leaves and fruits by puncturing epidermal cells (Minaei *et al.* 2016, Minaei 2017). Recent collections in southern Iran suggest that the species is widely distributed on various plants in this area (Minaei unpublished data, Jalil Alavi, personal communication, 2016).

Scirtothrips hafezi sp. n.

(Figs 6–14)

Female macroptera. Body pale yellow, abdominal tergites III–VIII with dark antecostal ridge extending fully across these tergites; sternites with antecostal ridge not shaded; major setae on IX–X light brown; fore wings uniformly faintly shaded; compound eyes with four ventrolateral pigmented ommatidia; antennal segment I pale, II brown, III–VIII progressively yellow to light brown (Figs 6, 11).
Antennal segments III–IV with forked sense cone short and stout. Anterior area of head including ocellar triangle without sculpture lines, a few transverse striae near posterior margin (Fig. 9); ocellar setae pair III arise on or just behind the tangent to anterior margins of posterior ocelli, setal bases closer together than length of the setae (Fig. 9). Pronotum striate, with two pairs of long setae (S2 and S3) on posterior margin (Fig. 9); posteromarginal setae S1 less than 0.2 times as long as pronotum. Metanotum reticulate medially (Fig. 12), median setae close to anterior margin and shorter and weaker than lateral pair. Fore wing second vein with 2 setae (Fig. 14), clavus with 3–4 marginal setae, and one discal seta; fore wing posterior margin with all cilia wavy. Tergites II–VI with median setae minute, usually closer together than their length; V–VI with 3 setae on lateral microtrichial field; VIII with no discal microtrichia anteromedially (Fig. 10), posteromarginal comb complete; IX with no microtrichia medially (Fig. 10). Sterna with microtrichia present laterally in three or four oblique rows, rarely extending mesad to marginal setae S2.

Measurements of holotype female in microns: Body length 937. Head width across eyes 145; ocellar seta III 36. Pronotum, median length 88; maximum width 167; posteromarginal setae S1 16, S2 46, S3 42. Metanotal

FIGURES 6–14. Scirtothrips hafezi sp. n. (6) Female; (7) Male; (8) Hind femora and tibia (male); (9) Head and pronotum; (10) Abdominal tergites VII–X; (11) Antenna; (12) Meso and metanotum; (13) Abdominal tergites VIII–X (male); (14) Fore wing.
Male macroptera. Smaller and paler than female (Fig. 7), tergal antecostal ridges scarcely shaded; tergum IX with pair of shaded, upwardly curved, drepanae (Fig. 13). Hind femora without stout dark setae (Fig. 8).

Comments. Among the 100 species of *Scirtothrips*, only *spinosus* Faure from South Africa shares with this new species the presence of two pairs of such long setae on the posterior margin of the pronotum. These setae, S2 and S3, are both almost 50% as long as the median length of the pronotum. Similarly, within this genus the only species that shares the presence of such a long pair of interocellar setae is *inermis* Priesner that was described from the Canary Islands but has been widely reported (Mound & Wells 2015). The new species is presumably unrelated to *inermis* because of the presence, rather than absence, of drepanae on tergite IX of males. Moreover, ocellar setae pair III arise between the posterior ocelli in *inermis*, whereas in *hafezi* and *spinosus* they arise on the tangent between the anterior margins of these ocelli. However, although in *spinosus* ocellar setae pair III are shorter than the distance between the posterior ocelli (Fig. 21 in Mound & Stiller 2011), this species and *hafezi* are probably closely related. They have a similarly reticulate metanotum, but in females *hafezi* has remarkably few microtrichia on the sternites, and these are arranged in a few widely spaced oblique rows. Moreover, all of the fore wing posteromarginal cilia are wavy, and there are less than four pairs of discal setae on the tergal microtrichial areas. Judging from the original illustration by Faure (1929), the drepanae of male *spinosus* are probably less strongly curved than in *hafezi*. The presence of pigmented ommatidia on the compound eyes of *hafezi* is interesting, because *inermis* has no such pigmented ommatidia, although the condition in *spinosus* is not known.

Etymology. Khaje Shams-ud-Diin Muḥammad Ḥafeẓ-e Shirazi, known by his pen name Hafez (1325/26–1389/90) was a Persian poet whose collected works are regarded as a pinnacle of Persian literature. His mausoleum is located in the city of Shiraz, capital of Fars province, southern Iran. Hafez Tomb is regarded as one of most famous attractions in Shiraz.

Scirtothrips mangiferae Priesner

(Fig. 5)

Scirtothrips mangiferae Priesner, 1932: 143.

Described from Africa (Priesner 1932) and recorded from the eastern Mediterranean area and Gabon (zur Strassen 2003), specimens of this species have also been seen from Morocco and southern India (in ANIC). In Iran the species was recorded from siris (*Albizia lebbek*) and citrus from Ahwaz (southern Iran) for the first time (Mohiseni et al. 1998), and subsequently from various plant species around Iran (Minaei et al. 2002; Etetbari & Hesami 2002; Bagheri et al. 2005). There is no any evidence that this species is a pest in Iran (Minaei et al. 2016), and the statement by Mound and Stiller (2011) that *S. mangiferae* “seems to be particularly associated with the young leaves of mango” is not supported by more recent evidence of polyphagy.

Acknowledgments

This study was supported by INSF (Iran National Science Foundation). We are particularly grateful to Dr. Jalil Alavi (Plant Protection Research Department, North Khorasan Agricultural and Natural Resources, Research and Education Center, AREEO, Bojnourd, Iran) and Dr. Jalal Hajizadeh (Department of Plant Protection, University of Guilan, Rasht, Iran) for loaning the specimens of *Drepanothrips reuteri* collected in North Khorasan and Guilan provinces respectively. Two anonymous referess carefully read the text and provided us with detailed criticism and corections.
References

https://doi.org/10.1007/s13355-013-0241-z
