Xin Centenary and Progress in Chinese Acarology: an introduction*

ZHI-QIANG ZHANG¹ & XIAO-YUE HONG²,
¹ Landcare Research, Private Bag 92170, Auckland, New Zealand; E-mail: zhangz@landcareresearch.co.nz
² Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Corresponding author: E-mail: xyhong@njau.edu.cn

This commemorative volume is dedicated to Prof Xin Jie-Liu (1909–1994)—a pioneer and founder of acarology and several other branches of zoology in China. Prof Xin was born in November 1909. To celebrate the centenary of his birth in November 2009, Dr Zhang Zhi-Qiang and Dr Hong Xiao-Yue organized a special commemorative symposium “Progress in Acarology in China” during the 9th National Congress of Acarology in Nanjing, China (Zhang, 2009). This volume, however, was conceived prior to the symposium and several leading acarologists in China were invited to prepare reviews of research progress in their area of study for this volume. Some of them also presented their reviews during the symposium. After the symposium, several additional chapters were invited and prepared for this volume.

This volume collects a paper in tribute to Prof Xin (Zhang & Dong, 2010) plus 18 reviews of progress in various aspects of acarology in China; 17 of these are mainly on the taxonomy of these taxa and each includes a historical review of faunistic studies on the group and also a checklist of taxa with bibliography (Table 1). These reviews cover major groups of mites of agricultural and environmental importance in China. We focus on mites of agricultural and environmental importance because (1) Prof Xin was mainly interested in these mites and (2) we were unable to include all mite groups due to the lack of time, the lack of currently active specialists for many other groups (e.g. medically important groups) and also the limitation of the expertise of the editors.

This book includes a total of 3089 species in 818 genera and 193 families (Table 1). These represent significant increases over 238 species in 76 genera and 23 families reported in Agricultural Mites of China¹ (Jiangxi University, 1984) and 788 species in 258 genera and 90 families listed in the agricultural acarology section of Researches of Acarology in China² (Chen & Ma, 1992), even when oribatid mites and water mites in this book were excluded from total counts.

At the end of the book we included two appendice providing English-Chinese translation of author names and journal/book titles cited in this volume. An index to supraspecific mite taxa was also included.

We hope that these reviews of progress in this volume will both stimulate and facilitate further studies of mites in China, and at the same time also facilitate access to Chinese literature on mites for researchers outside China. The authors of each chapter had tried to provide updates on various taxa

1. This book does not include water mites and oribatid mites but includes acarid mites (Astigmata).
2. This book includes oribatid mites, but not water mites
in China and included key references on these taxa. It should be noted not all references on those taxa were included in reviews for some chapters due to the lack of time for preparing the review and also the lack of space for this volume.

TABLE 1. A summary of number of mite taxa of agricultural and environmental importance in China reviewed/listed in this volume.

<table>
<thead>
<tr>
<th>Taxa</th>
<th>No. families</th>
<th>No. genera</th>
<th>No. species</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bdelloidea</td>
<td>2</td>
<td>25</td>
<td>74</td>
<td>Lin & Zhang, 2010a</td>
</tr>
<tr>
<td>Pentaleidae</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>This paper</td>
</tr>
<tr>
<td>Tydeoidea</td>
<td>4</td>
<td>14</td>
<td>41</td>
<td>Lin & Zhang, 2010d</td>
</tr>
<tr>
<td>Eriophyoidae</td>
<td>3</td>
<td>187</td>
<td>932</td>
<td>Hong et al., 2010a</td>
</tr>
<tr>
<td>Anystidae</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>This paper</td>
</tr>
<tr>
<td>Hydrachnidia</td>
<td>19</td>
<td>36</td>
<td>193</td>
<td>Jin et al., 2010</td>
</tr>
<tr>
<td>Terrestrial Parasitengona (except chiggers)</td>
<td>9</td>
<td>24</td>
<td>47</td>
<td>Zhang, 2010b</td>
</tr>
<tr>
<td>Raphignathoidea</td>
<td>8</td>
<td>31</td>
<td>112</td>
<td>Fan & Chen, 2010</td>
</tr>
<tr>
<td>Tetranychidae</td>
<td>1</td>
<td>28</td>
<td>212</td>
<td>Hong et al., 2010b</td>
</tr>
<tr>
<td>Tenuipalpidae</td>
<td>1</td>
<td>9</td>
<td>56</td>
<td>Zhang, 2010a</td>
</tr>
<tr>
<td>Tuckerellidae</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>This paper</td>
</tr>
<tr>
<td>Cheyletidae</td>
<td>1</td>
<td>24</td>
<td>48</td>
<td>Xia, 2010</td>
</tr>
<tr>
<td>Dolichocyboidea, Pygmephoroidea, Scutacaroida and Trochometridioidea</td>
<td>6</td>
<td>17</td>
<td>49</td>
<td>Gao & Zou, 2010</td>
</tr>
<tr>
<td>Pyemotidae</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>This paper</td>
</tr>
<tr>
<td>Tarsonemidae</td>
<td>1</td>
<td>16</td>
<td>105</td>
<td>Lin & Zhang, 2010c</td>
</tr>
<tr>
<td>Oribatida</td>
<td>97</td>
<td>275</td>
<td>599</td>
<td>Chen et al., 2010</td>
</tr>
<tr>
<td>Acarida</td>
<td>14</td>
<td>50</td>
<td>136</td>
<td>Fan et al., 2010</td>
</tr>
<tr>
<td>Psoroptidia</td>
<td>20</td>
<td>49</td>
<td>70</td>
<td>Wang & Fan, 2010</td>
</tr>
<tr>
<td>Macrochelidae</td>
<td>1</td>
<td>4</td>
<td>37</td>
<td>Lin & Zhang, 2010b</td>
</tr>
<tr>
<td>Blattisociidae</td>
<td>1</td>
<td>3</td>
<td>56</td>
<td>Zhang & Fan, 2010</td>
</tr>
<tr>
<td>Phytoseiidae</td>
<td>1</td>
<td>20</td>
<td>304</td>
<td>Wu et al., 2010</td>
</tr>
<tr>
<td>Total</td>
<td>193</td>
<td>818</td>
<td>3089</td>
<td></td>
</tr>
</tbody>
</table>

Four small families have a few species each and do not warrant separate chapters for them. They are briefly discussed below.

Pentaleidae

Penthaeleus major (Dugès, 1834) and *P. minor* (Canestrini, 1886) are the only two species of this family known in China (Liu & Wang, 1953; Yuan & Qian, 1984; Wang et al., 1996).

Penthaeleus major. This species was first reported as a pest of wheat in China by Liu & Wang (1953). Liu & Tang (1959) provided a comprehensive account of its morphology, ecology and chemical control on wheat in Sichuan, where it was found on plants of 23 species in 10 families and was a major pest of wheat (up to 15% reduction in yield). It had three generations per year (egg aestivation in summer and no hibernation in winter). They reported female longevity of 48 days (25–74) days and oviposition period of 30 (27–73) days, with fecundity averaging 22 eggs per female. Chung et al. (1963) studied the biology of this species in Shanxi and Beijing, where it had two or three generations per year and was one of the most important pests in irrigated wheat fields. It
passed through winter as adults or eggs. Overwintering eggs hatched in February to early March, while adults deposited eggs on the root, stubble or soil. The first generation of adults occurred in large numbers in late March and early April, when second generations of eggs were laid; these eggs would not hatch until mid-October. Adults were found damaging wheat from late October to early November. Yuan & Qiang (1984) provided detailed descriptions of the morphology and biology of *P. major* and also its damage to wheat in North and East China. Wang (1993) studied the damages and loss due to this mite in winter wheat and developed a control threshold for local conditions in Shandong. Chen (2002) studied the biology and control of this species in wheat fields in Hubei, where mite populations reached the peak in late March and early May. Tang *et al.* (2004) recently reported that it caused damage to corn seedlings in Sichuan, with 20–50% of the plants infected in March.

Penthaleus minor. Wang *et al.* (1996) reported this species from garlic crop in Guanzhong area in Shaanxi. It occurred in mixture with *P. major* on garlic leaves with similar damage symptom, but much less in numbers compared to *P. major*.

Tuckerellidae

Seven species of *Tuckerella* have been recorded from China, with no reports on their biology and control so far.

Tuckerella hainanensis Lin & Fu, 1997. Lin & Fu (1997b) described this species from *Coffea arabica* in Hainan Province.

Tuckerella ornata Tucker, 1926. Lin (1982) recorded this species on *Hevea brasiliensis, Hibiscus rosa-sinensis*, and *Mangifera indica* in Hainan Province.

Tuckerella parvoniformis (Ewing, 1933). Wang (1981) and Ma *et al.* (1984) described this species and recorded it from Zhejiang, Guangdong and Taiwan.

Tuckerella xiamenensis Lin, 1982. Lin (1982) described this species from *Achras zapota* from Xiamen, Fujian.

Tuckerella xinglongensis Lin & Fu, 1997. Lin & Fu (1997a) described this species from *Polyscias fruticosa var. plumata* and *Camellia sinensis* in Hainan Province.

Anystidae

An undetermined species of *Anystis* was first reported by Cheng & Ming (1979) as a predator of *Matsucoccus matsumurae* Kuwana in Jiangsu and had an important role in reducing pest populations. Four named species have been recorded from China (Berlese, 1923; Su *et al.*, 2006).

Anystis baccarum (Linnaeus, 1758). Ming *et al.* (1983) first reported this species as a predator of *Matsucoccus* in Jiangsu. Wu & Shen (1990) reported that its adults could consume over 100 newly emerged nymphs of *Hemiberlesia pitysophila* in Guangdong. Wu (1994) did a detailed life history of this species in the laboratory and found that it took on average 100 days for development from egg to adult at 21 °C. In the field, it could complete 2–3 generations per year in Guangzhou, with no diapause in winter but an aestivation appeared in summer at over 28 °C. He also showed that it could feed on a number of pests: *Panonychus citri* (33 larvae or nymphs per day), *Phyllocoprutra oleivora* (52 per day), *Diaphorina citri* (15 per day) and *Aphis citricola* (15 per day). Zeng *et al.* (2007) reported that this species was a major natural enemy of the tea leafhopper (*Empoasca vitis*) in Fujian, but its effectiveness was reduced by pesticides. In Guangdong, this species was an important natural enemy of tea pests.

3. Later reported as *Anystis baccarum* (Linnaeus) in Ming *et al.* (1983)
enemy of *Oligonychus coffeae* (Liao et al., 2010). In the last few years, this species was recorded as *A. agilis* by Su et al. (2006) from litchi trees in Guangdong, by Lin et al. (2009a) from mango in Guangdong and by Lin et al. (2009b) from *Phellodendron chinense* in Guangdong.

Anystis salicinus (Linnaeus, 1758). Su et al. (2006) first recorded this species from litchi trees in Guangdong.

Anystis wallacei Otto, 1992. Su et al. (2006) first recorded this species from litchi trees in Guangdong. Lin et al. (2009a) recorded it from mango in Guangdong.

Barellea sinensis (Berlese, 1923). Berlese (1923) described this species as *Anystis sinensis* based on males and females collected by A. P. Jacot in Beijing, China. There have been no further records of this species in China.

Walzia australica Womersley, 1942. Su et al. (2006) first recorded this species from litchi trees in Guangdong.

Pyemotidae

Only four species have been recorded from China so far, but several undescribed species were discovered by Yu Lichen and colleagues (He & Yu 2004; Yu & Zhang unpublished research). *Pyemotes tritici* (LaGreze-Fossat & Montagne, 1851) was reported (e.g. Zhong et al., 2007), but unpublished studies by Yu & Zhang showed that it is likely a mis-identification.

Pyemotes herfisi (Oudemans, 1936). Hu & Yang (1990) and Yang & Hu (1990) reported this species as a pest of silkworm and studied its anatomy and ultrastructure.

Pyemotes moseri Yu & Liang, 1996. Yu & Liang (1996) described this species parasitic on bark beetles in Hebei.

Pyemotes scolyti Oudemans, 1936. Yu et al. (1997) reported this species from Hebei, where it could complete many generations per year. It was an effective natural enemy of *Scolytus* species. It was reported to have short generation time (8 days) at 25 °C with fecundity of 60 offspring per female and high female: male ratio of 30: 1–2. Further life-table studies at the same temperature by He & Yu (2004) showed its intrinsic rate of increase was 0.4361.

Pyemotes ventricosus (Newport, 1850). Anonymous (1980) reported it as a natural enemy of *Trogoderma granarium*.

Acknowledgements

We are grateful to colleagues who reviewed the manuscripts accepted in this volume. We also thank Dr Xue Xiao-Feng (Nanjing Agricultural University, Nanjing, China) who kindly helped with copying of some papers in China. While this volume was prepared, Zhang was supported by Foundation for Research, Science and Technology, New Zealand.

References

