Open Access Open Access  Restricted Access Subscription or Fee Access


DOI: http://dx.doi.org/10.11646/phytotaxa.307.1.4

Description of a tropical new species of Wilmottia (Oscillatoriales, Cyanobacteria) and considerations about the monophyly of W. murrayi

NÁTHALI MARIA MACHADO-DE-LIMA, MARIÉLLEN DORNELLES MARTINS, LUIS H. Z. BRANCO

Abstract


The genus Wilmottia was described based on polyphasic studies of Phormidium murrayi populations that revealed them not closely related to other Phormidium species, despite their morphological similarity. The genus contained one species, W. murrayi, found exclusively in cold and temperate areas of the world. Other species morphologically similar to Phormidium were expected to pertain to Wilmottia, but the genus remained unispecific until now. During a survey of Cyanobacteria in Brazil, 11 strains morphologically similar to Wilmottia from southern and southeastern regions were isolated in unicyanobacterial cultures and submitted to polyphasic evaluation (morphological, ecological and molecular studies). The populations studied presented homogeneous morphology (trichomes cylindrical, straight and not attenuated) and were found inhabiting quite diverse environments (freshwater, wet soil and barks of trees). The molecular analyses based on 16S rRNA gene sequences placed the 11 studied strains in two distinct clusters inside the highly supported Wilmottia clade. The 16S-23S ITS marker was very variable and did not provide consistent information to improve the differentiation among the strains. The characteristics of the Brazilian populations, essentially the genetic ones, resulted in the recognition of a new cryptic species of Wilmottia (W. stricta) and indicated a wider distribution for W. murrayi. Such distribution would comprehend a wide climatic range (from polar to tropical) and occurrence in very distinct habitats (aquatic and aerophytic). The possible explanations to that scenario would be the low sensitivity of 16S rRNA gene as marker for distinguishing species inside of this complex of strains or W. murrayi actually represents a case of ubiquitous species. The addition of other genes or whole genome sequencing could be the way to reach a more confident answer. Wilmottia reveals a very intricate phylogeny according to the 16S rRNA gene and more studies are recommended to confirm its monophyly.


Keywords


Morfology; 16S rRNA gene; Internal Transcribed Spacer; Taxonomy, Algae

Full Text:

PDF/A (2MB)

References


Bravakos, P., Kotoulas, G., Skaraki, K., Pantazidou, A. & Economou-Amilli, A. (2016) A polyphasic taxonomic approach in isolated strains of Cyanobacteria from thermal springs of Greece. Molecular Phylogenetics and Evolution 98: 147–160.

http://doi.org/10.1016/j.ympev.2016.02.009

Chatchawan, T., Komárek, J., Strunecký, O., Šmarda, J. & Peerapornpisal, Y. (2012) Oxynema, a new genus separated from the genus Phormidium (Cyanophyta). Cryptogamie, Algologie 33 (1): 41–59.

http://doi.org/10.7872/crya.v33.iss1.2011.041

Chrismas, N.A.M., Anesio, A.M. & Sánchez-Baracaldo, P. (2015) Multiple adaptations to polar and alpine environments within cyanobacteria: a phylogenomic and Bayesian approach. Frontiers in Microbiology 6: 1070.

https://doi.org/10.3389/fmicb.2015.01070

Coenye, T. & Vandamme, P. (2003) Intragenomic heterogeneity between multiple 16S ribosomal RNA operons in sequenced bacterial genomes. FEMS Microbiology Letters 228: 45–49.

http://doi.org/10.1016/S0378-1097(03)00717-1

Darriba, D., Taboada, G.L., Doallo, R. & Posada, D. (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9: 772.

https://doi.org/10.1038/nmeth.2109

Dvořák, P., Casamatta, D.A., Hašler, P., Ondřej, V., Poulíčková, A. & Sanges, R. (2014) Synechococcus: 3 billion years of global dominance. Molecular Ecology 23: 5538–5551.

http://doi.org/10.1111/mec.12948

Dvořák, P., Poulíčková, A., Hašler, P., Belli, M., Casamatta, D.A. & Papini, A. (2015) Species concepts and speciation factors in cyanobacteria, with connection to the problems of diversity and classification. Biodiversity and Conservation 24: 739–757.

http://doi.org/10.1007/s10531-015-0888-6

Ewing, B. & Green, P. (1998) Base-calling of automated sequencer traces using Phred. II. Error probabilities. Genome Research 8: 186–194.

https://doi.org/10.1101/gr.8.3.186

Ewing, B., Hillier, L., Wendl, M.C. & Green, P. (1998) Base-calling of automated sequencer traces using Phred. I. Accuracy assessment. Genome Research 8: 175–185.

https://doi.org/10.1101/gr.8.3.175

Gordon, D., Abajian, C. & Green, P. (1998) Consed: a graphical tool for sequence finishing. Genome Research 8: 195–202.

https://doi.org/10.1101/gr.8.3.195

Hall, T.A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98.

Huelsenbeck, J.P. & Ronquist, F. (2001) MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754–755.

https://doi.org/10.1093/bioinformatics/17.8.754

Iteman, I., Rippka, R., Marsac, N.T. & Herdman, M. (2000) Comparison of conserved structural and regulatory domains within divergent 16S rRNA-23S rRNA spacer sequences of Cyanobacteria. Microbiology 146: 1275–1286.

https://doi.org/10.1099/00221287-146-6-1275

Jančušová, M, Kováčik, L., Pereira, A.B., Dusinsky, R. & Wilmotte, A. (2016) Polyphasic characterization of 10 selected ecologically relevant filamentous cyanobacterial strains from the South Shetland Islands, Maritime Antarctica. FEMS Microbiology Ecology 92 (7): fiw100.

https://doi.org/10.1093/femsec/fiw100

Johansen, J.R., Kováčik, L, Casamatta, D., Iková, K.F. & Kaštovský, J. (2011) Utility of 16S-23S ITS sequence and secondary structure for recognition of intrageneric and intergeneric limits within cyanobacterial taxa: Leptolyngbya corticola sp. nov. (Pseudanabaenaceae, Cyanobacteria). Nova Hedwigia 92 (3–4): 283–302.

https://doi.org/10.1127/0029-5035/2011/0092-0283

Kim, M., Oh, H.-S., Park, S.-C. & Chun, J. (2014) Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. International Journal of Systematic and Evolutionary Microbiology 64: 346–351.

https://doi.org/10.1099/ijs.0.059774-0

Komárek, J. (2010) Recent changes (2008) in cyanobacteria taxonomy based on a combination of molecular background with phenotype and ecological consequences (genus and species concept). Hydrobiologia 639: 245–259.

https://doi.org/10.1007/s10750-009-0031-3

Komárek, J. (2011) Introduction to the 18th IAC Symposium in České Budějovice 2010, Czech Republic - Some current problems of modern cyanobacterial taxonomy. Fottea 11 (1): 1–7.

https://doi.org/10.5507/fot.2011.001

Komárek, J. (2016) A polyphasic approach for the taxonomy of cyanobacteria: principles and applications, European Journal of Phycology 51 (3): 346–353.

http://doi.org/10.1080/09670262.2016.1163738

Komárek, J. & Anagnostidis, K. (2005) Cyanoprokaryota II. Teil: Oscillatoriales. In: Büdel, B., Krienitz, L., Gärtner, G. & Schagerl, M. (Eds.) Süβwasserflora von Mitteleuropa 19/2. Elsevier/Spektrum Akademischer Verlag, München, 759 pp.

Komárek, J., Kaštovský, J., Mareš, J. & Johansen, J.R. (2014) Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using polyphasic approach. Preslia 86: 295–335.

Komárek, J., Kaštovský, J., Ventura, S., Turicchia, S. & Šmarda, J. (2009) The cyanobacterial genus Phormidesmis. Algological Studies 129: 41–59.

https://doi.org/10.1127/1864-1318/2009/0129-0041

Komárek, O. & Komárek, J. (2010) Diversity and ecology of cyanobacterial microflora of Antarctic seepage habitats: comparison of King George Island, Shetland Islands, and James Ross Island, NW Weddell Sea, Antarctica. In: Seckbach, J. & Oren, A. (Eds.) Microbial mats: modern and ancient microorganisms in stratified systems. Springer, Dordrecht, pp. 515–539.

https://doi.org/10.1007/978-90-481-3799-2_27

Lokmer, A. (2007) Polyphasic approach to the taxonomy of the selected oscillatorian strains (Cyanobacteria). University of South Boehmia, Céské Budějovice, 61 pp.

Lowe, T.M. & Eddy, S.R. (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Research 25 (5): 955–964.

https://doi.org/10.1093/nar/gkw413

Malone, C.F.S., Rigonato, J., Laughinghouse IV, H.D., Schmidt, E.C., Bouzon, Z.L., Wilmotte, A., Fiore, M.F. & Sant’Anna, C.L. (2015) Cephalothrix gen. nov. (Cyanobacteria): towards an intraspecific phylogenetic evaluation by multilocus analyses. International Journal of Systematic and Evolutionary Microbiology 65: 2993–3007.

https://doi.org/10.1099/ijs.0.000369

Martins, M.D. & Branco, L.H.Z. (2016) Potamolinea gen. nov. (Oscillatoriales, Cyanobacteria): a phylogenetically and ecologically coherent cyanobacterial genus. International Journal of Systematic and Evolutionary Microbiology 66: 3632–3641.

https://doi.org/10.1099/ijsem.0.001243

Martins, M.D., Rigonato, J., Taboga, S.R. & Branco, L.H.Z. (2016) Proposal of Ancylothrix gen. nov., a new genus of Phormidiaceae (Cyanobacteria, Oscillatoriales) based on a polyphasic approach. International Journal of Systematic and Evolutionary Microbiology 66 (6): 2396–2405.

https://doi.org/10.1099/ijsem.0.001044

Mühlsteinová, R., Johansen, J.R., Pietrasiak, N., Martin, M.P., Osorio-Santos, K. & Warren, S.D. (2014) Polyphasic characterization of Trichocoleus desertorum sp. nov. (Pseudanabaenales, Cyanobacteria) from desert soils and phylogenetic placement of the genus Trichocoleus. Phytotaxa 193: 241–261.

http://doi.org/10.11646/phytotaxa.163.5.1

Neilan, B.A., Jacobs, J., Del Dot, T., Blackall, L.L., Hawkins, P.R. Cox, P.T. & Goodman, A.E. (1997) rDNA sequences and evolutionary relationships among toxic and nontoxic cyanobacteria of the genus Microcystis. International Journal of Systematic Bacteriology 47: 693–697.

https://doi.org/10.1099/00207713-47-3-693

Osorio-Santos, K., Pietrasiak, N., Bohunická, M., Miscoe, L.H., Kováčik, L., Martin, M.P. & Johansen, J.R. (2014) Seven new species of Oculatella (Pseudanabaenales, Cyanobacteria): taxonomically recognizing cryptic diversification. European Journal of Phycology 49 (4): 450–470.

http://doi.org/10.1080/09670262.2014.976843

Palinska, K.A. & Marquardt, J. (2008) Genotypic and phenotypic analysis of strains assigned to the widespread cyanobacterial morphospecies Phormidium autumnale. Archives of Microbiology 189: 325–335.

https://doi.org/10.1007/s00203-007-0323-9

Palinska, K.A. & Surosz, W. (2014) Taxonomy of cyanobacteria: a contribution to consensus approach. Hydrobiologia 740: 1–11.

https://doi.org/10.1007/s10750-014-1971-9

Ramasamy, D., Mishra, A.K., Lagier, J.-C., Padhmanabhan, R., Rossi, M., Sentausa, E., Raoult, D. & Fournier, P.-E. (2014) A polyphasic strategy incorporating genomic data for the taxonomic description of novel bacterial species. International Journal of Systematic and Evolutionary Microbiology 64: 384–391.

https://doi.org/10.1099/ijs.0.057091-0

Rippka, R., Deruelles, J., Waterbury, J.B., Herdman, M. & Stanier, R.Y. (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Journal of General Microbiology 111: 1–61.

https://doi.org/10.1099/00221287-111-1-1

Sciuto, K., Andreoli, C., Rascio, N., Larocca, N. & Moro, I. (2012) Polyphasic approach and typification of selected Phormidium strains (Cyanobacteria). Cladistics 1: 1–18.

https://doi.org/10.1111/j.1096-0031.2011.00386.x

Strunecký, O., Elster, J. & Komárek, J. (2011) Taxonomic revision of the freshwater cyanobacterium “Phormidiummurrayi = Wilmottia murrayi. Fottea 11 (1): 57–71.

https://doi.org/10.5507/fot.2011.007

Strunecký, O., Komárek, J. & Šmarda, J. (2014) Kamptonema (Microcoleaceae, Cyanobacteria), a new genus derived from the polyphyletic Phormidium on the basis of combined molecular and cytomorphological markers. Preslia 86 (2): 193–208.

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar, S. (2011) Mega 5: Molecular evolutionary genetics analysis using maximum parsimony methods. Molecular Biology and Evolution 28 (10): 2731–2739.

https://doi.org/10.1093/molbev/msr121

Taton, A., Grubisic, S., Brambilla, E., De Wit, R. & Wilmotte, A. (2003) Cyanobacterial diversity in natural and artificial microbial mats of lake Fryxel (McMurdo Dry Valleys, Antarctica): a morphological and molecular approach. Applied and Environmental Microbiology 69: 5157–5169.

https://doi.org/10.1128/AEM.69.9.5157-5169.2003

Taton, A., Grubisic, S., Ertz, D., Hodgson, D.A., Piccardi, R., Biondi, N., Tredici, M.R., Mainini, M., Losi, D., Marinelli, F. & Wilmotte, A. (2006) Polyphasic study of Antarctic cyanobacterial strains. Journal of Phycology 42 (6): 1257–1270.

https://doi.org/10.1111/j.1529-8817.2006.00278.x

Thompson, J.D., Higgins, D.G. & Gibson, T.J. (1994) ClustalW: improving the sensibility of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix. Nucleic Acids Research 22: 4673–4680.

https://doi.org/10.1093/nar/22.22.4673

Turicchia, S., Ventura, S., Komárková, J. & Komárek, J. (2009) Taxonomic evaluation of cyanobacterial microflora from alkaline marshes of northern Belize. 2. Diversity of oscillatorialean genera. Nova Hedwigia 89: 165–200.

https://doi.org/10.1127/0029-5035/2007/0084-0065

Zuker, M. (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research 31 (13): 3406–3415.

https://doi.org/10.1093/nar/gkg595


Refbacks

  • There are currently no refbacks.


ISSN 1179-3155 (print); ISSN 1179-3163 (online)

Published by Magnolia Press, Auckland, New Zealand