Towards a natural classification of Dothideomycetes 2: The genera
*Cucurbitidothis*, *Heterosphaeriopsis*, *Hyalosphaera*, *Navicella* and *Pleiostomellina*
(Dothideomycetes incertae sedis)

HIRAN A. ARIYAWANSA1,2,3, KASUN M. THAMBUGALA2,3, JI-CHUAN KANG1, SITI A. ALIAS4, EKACHAI CHUKEATIROTE2,3 & KEVIN D. HYDE2,3

1 The Engineering and Research Center for Southwest Bio-Pharmaceutical Resources of National Education Ministry of China, Guizhou University, Guiyang 550025, Guizhou Province, China
2 School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
3 Institute of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
4 Institute of Biological Sciences, University of Malaya, 50603, Kuala Lumpur
email: jichuank@yahoo.co.uk; kdhyde3@gmail.com

Abstract

By re-examining the generic types of Dothideomycetes genera, *incertae sedis* we can propose higher level positions according to the morphology based on modern taxonomic concepts but, more importantly, we illustrate the taxa so that they are better understood. In this way the taxa can be recollected and molecular data can be used to place them in a natural taxonomic framework of the Ascomycota. The generic types of *Cucurbitidothis*, *Heterosphaeriopsis*, *Hyalosphaera*, *Navicella* and *Pleiostomellina* were re-examined in this study. A synopsis of the history and descriptions and illustrations of these genera are provided. *Cucurbitidothis* is placed in *Cucurbitariaceae* as a distinct genus, while *Navicella* and *Pleiostomellina* are referred to *Melanommataceae* and *Parmulariaceae* respectively based on the morphological similarities. *Heterosphaeriopsis* and *Hyalosphaera* are retained in Dothideomycetes genera *incertae sedis* as they are not typical of any existing families of Dothideomycetes. Fresh collections of these genera are needed for further studies, so that they can be epitypified and molecular data can be analyzed to stabilize their natural classification.

Introduction

Dothideomycetes is the largest and possibly most phylogenetically diverse class within the phylum, Ascomycota (Hyde et al. 2013, Kirk et al. 2008, Schoch et al. 2009) and is characterized mainly by bitunicate asci with fissitunicate dehiscence (Hyde et al. 2013, Kirk et al. 2008). The class comprises a wide group of fungi that subsist in the majority of the niches where fungi can be found. Many species are saprobes, with many asexual states comprising important plant pathogens that cause serious problems to crop plants (Ariyawansa et al. 2013a,b, Liu et al. 2011, Manamgoda et al. 2012). Even though there is a large body of work comprising taxonomic and phylogenetic studies, most genera hypothesized to be members of Dothideomycetes remain under-studied and poorly understood within a systematic framework. Recent studies using multigene analysis and some coupled with morphology have provided the groundwork for classification in the Dothideomycetes (Liew et al. 2000, 2003, Lumbsch & Lindemuth 2001, Schoch et al. 2009, Spatafora et al. 2006, Zhang et al. 2012).

We have been studying the genera of Dothideomycetes (Ariyawansa et al. 2013a,b,c, Boonmee et al. 2011, Hyde et al. 2013, Liu et al. 2012, Wu et al. 2011, Zhang et al. 2012), especially Dothideomycetes *incertae sedis* to provide a natural classification of this large class (Ariyawansa et al. 2013b, Thambugala et al. 2014). The aim of the present study, the second paper in this series ((Ariyawansa et al. 2013b), is to re-visit the generic types of genera that have been categorized in Dothideomycetes *incertae sedis* and are poorly understood. In this paper we re-describe *Cucurbitidothis*, *Heterosphaeriopsis*, *Hyalosphaera*, *Navicella* and *Pleiostomellina* from type material, provide illustrations and discuss suitable placements at the family and ordinal levels.
Materials and methods

Specimen examination

The basic methodology used in this study was the same as Ariyawansa et al. (2013b). Type specimens were borrowed from BPI, FH, S, URM and W. Ascomata were rehydrated in water and 5% KOH prior to examination and sectioning. Hand sections of the fruiting structures were mounted in water for microscopic studies and photomicrography. The fungi were examined under a Nikon ECLIPSE 80i compound microscope and photographed by a Canon 450D digital camera fitted to the microscope. Measurements were made with the Tarosoft (R) Image Frame Work program and images used for figures were processed with Adobe Photoshop CS3 Extended version 10.0 software (Adobe Systems, USA). For each genus, the type species is listed together with a description of the genus, except in cases where there is only a single species in the genus. Notes on the type genus are provided along with full citations for the type species.

Results and discussion

Taxonomy

Cucurbitariaceae G. Winter

The family Cucurbitariaceae was introduced by Winter (1885) and typified with Cucurbitaria berberidis (Pers.) Gray. The family is characterized by aggregated, ostiolate ascomata on a basal stromatic structure, fissitunicate and cylindrical asci and pigmented, phragmosporous or muriform ascospores (Hyde et al. 2013). Currently Cucurbitariaceae consists of four sexual genera, viz Cucurbitaria Gray., Curreya Sacc., Rhytidiella Zalasky., and Syncarpella Theiss. & Syd., and two asexual genera viz Pyrenochaeta De Not., and Pyrenochaetopsis Gruyter et al. (Doilom et al. 2013, Hyde et al. 2013).

Cucurbitariaceae G. Winter


Type species:—Cucurbitidothis pityophila (J.C. Schmidt & Kunze) Petr., Annls mycol. 19(3/4): 201 (1921) MycoBank: MB 509319 (Fig. 1)
≡ Sphaeria pityophila J.C. Schmidt & Kunze [as 'pithyophila'], in Fries, Syst. mycol. (Lundae) 2(2): 425 (1823)

Saprobic on dead wood. Sexual state: Ascomata 380–450 × 360–420 μm (X= 430 × 400 μm, n = 10), solitary or scattered, superficial, semi-immersed to erumpent, subglobose to broadly ellipsoid, wall dark brown to black, coriaceous, ostiolate. Ostiole widely porate, with well-developed neck, ostiolar canal filled with a tissue of hyaline cells. Peridium 30–65 μm (X= 40 μm, n = 10) wide, comprising 1–2 layers of cells, outer layer composed of heavily pigmented thick-walled cells of textura angularis, inner layer composed of hyaline thin-walled cells. Hamathecium of dense, 2–4 μm (X= 3 μm, n = 10) diam., cellular pseudoparaphyses, branching, anastomosing between and above the asci, embedded in mucilage. Asci 100–140 × 7–10 μm (X= 120 × 8 μm, n = 20), 8-spored, bitunicate, fissitunicate, cylindrical, with short, narrow pedicel, thickened and rounded at apex with an ocular chamber. Ascospores 15–19 × 3–6 μm (X= 16 × 5 μm, n = 40), uniseriate, partially overlapping, oblong, reddish brown to dark yellowish brown, muriform, with 3 transverse septa and 1–2 vertical septa in the central cells when mature, constricted at the middle septum, smooth-walled, lacking a sheath. Asexual state: unknown.

Material examined:—CANADA. British Colombia: Victoria watershed, on dead wood of Pinus monticola Douglas ex D. Don (Pinaceae), 23 May 1950, A.K Parker (UBC-F3787!, paratype)

Notes:—Cucurbitidothis pityophila, the type species of Cucurbitidothis was initially introduced by Schmidt & Kunze (1823) as Sphaeria pityophila and placed in Xylariaceae. Petrak (1940) transferred Cucurbitidothis as a
separate genus to *Cucurbitariaceae*, Pleosporales. Later, von Arx & Müller (1975) treated *Cucurbidothis* as a synonym of *Curreya*. After observing the paratype of *Cucurbidothis pityophila* from UBC, we proposed to maintain the species as a separate genus in *Cucurbitariaceae* based on its distinct characters. Both *Cucurbidothis* and *Curreya* have large muriform ascospores, cellular pseudoparaphyses and small ascomata, but *Cucurbidothis* differs from *Curreya* and other genera of *Cucurbitariaceae* in its superficial ascomata growth on conifer wood and strictly cylindrical asci (Barr 1990b, Checa 2004, Doilm et al. 2013).

**Figure 1.** *Cucurbidothis pityophila* (paratype). a. Herbarium material. b. Ascomata on host substrate. c. Close-up of ascomata. d–e. Sections of ascomata. f. Close-up of peridium. g. Hamathecium of dense long cellular pseudoparaphyses, branching, anastomosing between and above. h–k. Asci with short, narrow pedicel. l–o. Reddish brown to dark yellowish brown, muriform ascospores. Scale bars: d–e = 100 µm, f–g = 10 µm, h–k = 15 µm, l–o = 5 µm.
Five *Cucurbitoidis* species are listed in Index Fungorum (2013), but no molecular data is available for any of these. Therefore, fresh collections of the type species of the genus are needed so that molecular data can be obtained to confirm the natural taxonomic affinities of this genus. By giving a detailed description and illustrations we hope to provide impetus for future work.

**Melanommataceae** G. Winter

Based on globose or depressed perithecial ascomata, fissionticate asci, pigmented phragmosporous ascospores and trabeculate pseudoparaphyses, Winter (1885) introduced *Melanommataceae* and typified the genus with *Melanomma* (Barr 1990a, Zhang et al. 2012). Barr (1983) treated *Melanommataceae* as a separate order, but recent molecular phylogenetic studies do not give any support to the division of Melanommatales from Pleosporales (Liew et al. 2000, Mugambi & Huhndorf 2009, Zhang et al. 2012). *Melanommataceae* asexual states are rarely hypomyecetous, with ontogenic structures (e.g. with annellidic conidiogenesis in *Exosporiella* and *Pseudospiropses*) or coelomycetous (e.g. “Aposphaeria”-like and *Pyrenochaeta*) (Zhang et al. 2012). Currently the family comprises 12 sexual genera and four asexual genera (Hyde et al. 2013).


**Saprobic** on dead wood. **Sexual state:** Ascomata solitary or scattered, erumpent through the outer layer of the host tissue to nearly superficial, coriaceous. Ostiole usually widely porate, with well developed neck. Peridium comprising 1–2 layers of thick-walled, textura angularis. Hamathecium of dense long trabeculate pseudoparaphyses, branching, anastomosing between and above the asci, embedded in mucilage. Asci bitunicate, fissitunicate, clavate to sub-cylindrical. Ascospores ellipsoid to narrowly cylindrical, with well developed neck, ostiolar canal filled with a tissue of hyaline cells, coriaceous. **Asexual state:** unknown.

**Type species:** *Navicella julii* Fabre, Annls Sci. Nat., Bot., sér. 6, 9: 96 (1879) [1878] MycoBank: MB158755 (Fig. 2)

**Saprobic** on dead wood. **Sexual state:** Ascomata 750–890 × 460–600 µm ( = 810 × 520 µm, n = 10), solitary or scattered, erumpent through the outer layer of the host tissue to nearly superficial, coriaceous. Ostiole usually widely porate, with well developed neck, ostiolar canal filled with a tissue of hyaline cells, coriaceous. Peridium 33–45 µm ( = 38 µm, n = 10) wide, comprising a single layer of highly pigmented, dark brown to black, thick-walled cells of textura angularis. Hamathecium of dense 1–1.5 µm ( = 1.2 µm, n = 20) wide, long, trabeculate pseudoparaphyses, branching, anastomosing between and above the asci, embedded in mucilage. Asci 150–200 × 15–20 µm ( = 160 × 17 µm, n = 20), 8-spored, bitunicate, fissitunicate, clavate to sub-cylindrical, long pedicellate and thickened, rounded at apex, with a minute ocular chamber. Ascospores 55–75 × 8–12 µm ( = 60 × 10 µm, n = 40), biseriate, partially overlapping, ellipsoid, 5–8-septate, primary septum euseptate, and others distoseptate, brown to chestnut-brown, verrucose, hyaline appendage at each end, lacking a sheath. **Asexual state:** unknown.

**Material examined:**—FRANCE. Vaucluse, on dead wood, *H. Fabre* (S-F71928!, holotype)

**Notes:**—The genus is characterized by immersed to erumpent, globose ascomata with an elongated or rarely rounded apex and trabeculate pseudoparaphyses, branching, anastomosing between clavate or cylindrical asci and with multi-septate ascospores having hyaline appendages at each end (Barr 1990). Based on its saprobitic nature on bark, Holm & Holm (1988) transferred *Navicella* to *Lophiostomataceae*. Barr (1990) referred *Navicella* to the *Massariaceae* based on the wide endotunica, thin apical ring and distoseptate ascospores, but this classification was not followed by Zhang et al. (2012) and Voglmayr & Jaklitsch (2011). *Navicella* shares similarities with *Melanomma* in processing superficial globose to subglobose, coriaceous ascomata with long, trabeculate pseudoparaphyses in a gelatinous matrix and brown ascospores, but differs from the other genera of *Melanomma* in having, clavate or cylindrical asci with a long pedicel and ascospores with euseptate primary septum and others distoseptate with hyaline appendages at each end. Currently 116 *Navicella* species are listed in Index Fungorum (2013) but no molecular data is available for any of these species. Some of the lichenized species have been classified under *Navicella* (Aptroot 2001, 2003), thus most of these may need accommodating in other genera. We assign *Navicella* to *Melanomma* pending molecular investigation.
**FIGURE 2.** *Navicella julii* (holotype). a. Herbarium material. b. Ascomata on host substrate. c. Close up of ascomata. d. Section of ascoma. e. Section of the peridium. f. Long trabeculate pseudoparaphyses, branching and anastomosing between and above the asci. g–h. Immature and mature asci with long pedicels. i–l. Brown to chestnut-brown ascospores. Scale bars: d–e = 100 µm, e–f = 10 µm, g–h = 15 µm, i–l = 5 µm.

**Parmulariaceae** E. Müll. & Arx ex M.E. Barr

The family *Parmulariaceae* was invalidly introduced by Müller & von Arx (1962) and later validated by Barr (1979). The family is clearly polyphyletic and contains a range of ascostromata types, ascomata and even thyriothecia, ascus and ascospores forms (Inácio & Cannon 2008). Lumbsch & Huhndorf (2010) included 34
genera in the family, while Hyde et al. (2013) accepted 30 genera. Parmulariaceae is characterized by shield-like to star-shaped or elliptical to boat-shaped ascostromata with or lacking appressoria and pseudoparaphyses along with fissitunicate, short pedicellate asci and 1-septate ascospores. Asexual states of the family are coelomycetous or hyphomycetous (Hyde et al. 2013).


**Type species:**—Pleio-stomellina pernambucensis Bat., J.L. Bezerra & Cavalc., in Batista & Bezerra, Portug. acta biol., Sér. B 7(4): 374 (1964) MycoBank: MB 337168 (Fig. 3)

Saprobic on leaves. **Sexual state:** Ascostromata solitary to gregarious, superficial to semi-immersed, black to brown, carbonaceous, flattened, with numerous locules in a circle, cells of ascostromata comprising brown-walled cells of textura angularis. Locules 80–120 × 400–450 µm (ء= 100 × 410 µm, n = 10), globose to subglobose, with individual central ostioles. Peridium of locules 16–25 µm diam (ء= 20 µm, n = 10), comprising one layer of thin-walled, heavily pigmented, small, dark brown to black cells of textura angularis. Pseudoparaphyses absent. Ascii 65–80 × 35–50 µm (ء= 70 × 40 µm, n = 20), 8-spored, bitunicate, fissitunicate, cylindrical, thick-walled, without a pedicel and with a distinct ocular chamber. Ascospores 38–44 × 15–18 µm (ء= 42 × 16 µm, n = 40), 2–3-seriate, ellipsoidal, with rounded ends, hyaline when immature and dark brown to reddish brown at maturity, 1-septate, constricted at the septum, verrucose. **Asexual state:** unknown.

**FIGURE 3.** Pleio-stomellina pernambucensis (holotype). a. Close-up of ascostroma. b. Section of ascostroma. c. Close-up of the peridium. d–f. Mature and immature asci without a pedicel. g–h. Dark brown to chestnut-brown ascospores. Scale bars: b = 100 µm, c = 10 µm, d–f = 10 µm, g–h = 5 µm.

**Material examined:**—BRAZIL. João Pessoa: 11 August 1968, R. Garnier (URM!, holotype).

**Notes:**—Based on superficial, flattened carbonaceous ascomata with numerous locules in a circle, cylindrical asci without a pedicel and 2–3-seriate, ellipsoidal, 1-septate, verrucose ascospores, Batista (1964) introduced Pleio-stomellina as a monotypic genus typified by P. pernambucensis. Pleio-stomellina shows similarities with Parmulariaceae in having solitary to gregarious, carbonaceous ascomata with multi-locules, fissitunicate, cylindrical asci and dark brown to reddish brown, 1-septate, verrucose ascospores. Pleio-stomellina differs from the
other genera of Parmulariaceae in having thick-walled, bitunicate asci without a pedicel, lack of pseudoparaphyses and 2–3-seriate ascospores having verrucose spore walls (Hyde et al. 2013). We refer Pleiostomellina to Parmulariaceae based on its similarities with Parmularia. The generic type needs recollecting, epitypifying and sequencing so that phylogenetic analysis can be used to confirm family relationships.

**Dothideomycetes genera incertae cedis**

Huhndorf & Lumbsch (2010) included two orders, 34 families and over 100 genera in Dothideomycetes incertae sedis because the exact placement of the species within this order is uncertain.

**Heterosphaeriopsis** Hafellner, Nova Hedwigia, Beih. 62: 175 (1979)

**Type species:** *Heterosphaeriopsis fulvodisca* (Pat.) Hafellner, Beih. Nova Hedwigia 62: 176 (1979) MycoBank: MB 315200 (Fig. 4)

≡ *Karschia fulvodisca* Pat., Bull. Soc. mycol. Fr. 11(4): 218 (1895)


*Saprobic* on dead wood. **Sexual state:** *Ascomata* 340–380 × 420–480 µm ( = 350 × 440 µm, n = 10), semi-immersed to superficial, solitary or scattered, dark brown to black, with flattened base, globose or subglobose, carbonaceous, discharging ascospores via a longitudinal slit-like opening. **Peridium** 40–80 µm ( = 55 µm, n = 10) thick, comprising 2-layers, outer layer composed of heavily pigmented thick-walled cells of *textura angularis*, inner layer composed of hyaline thin-walled cells. **Pseudoparaphyses** 2–3 µm ( = 3 µm, n = 20) wide, cellular, numerous. **Asci** 75–95 × 20–30 µm ( = 80 × 24 µm, n = 20), 8-spored, bitunicate, fissitunicate, clavate to broadly-clavate, with short, broad, furcate pedicel, thickened and rounded at apex. **Ascospores** 18–22 × 8–12 µm ( = 20 ×
10 µm, n = 40), biseriate to partially overlapping uniseriate near the base, obovoid, 1-septate, and deeply constricted at the septum, light brown to dark brown, walls smooth to verrucose. Asexual state: unknown.

Material examined:—SWEDEN. on dead bark (FH, holotype).

Notes:—Heterosphaeriopsis is presently monotypic. The genus is placed in Dothideomycetes, genera incertae sedis in Index Fungorum (2013) and Lumitsch & Huhndorf (2010). Heterosphaeriopsis is characterized by superficial, carbonaceous ascomata with a flattened base, cellular pseudoparaphyses and asci with an unusual furcate pedicel and 1-septate brown ascospores. It resembles some species in Hysteriaceae and Patellariaceae in possessing hysterothecia opening via a longitudinal slit (Hyde et al. 2013). This combination of characters does not fit well in any Dothideomycete families and therefore we retain this genus in Dothideomycetes, genera incertae sedis. Morphology coupled with molecular data is essential to establish the correct placement of this unusual genus.


Type species:—Hyalosphaera miconiae F. Stevens, Trans. Ill. St. Acad. Sci. 10: 172 (1917) MycoBank: MB 215013 (Fig. 5)

Pathogenic or saprobic on leaves. Sexual state: Ascomata 90–190 × 80–130 µm (median 130 × 110 µm, n=10), superficial, solitary or scattered, globose to subglobose, yellowish brown to dark brown, base flattened on the host surface, smooth, dehiscence via a irregular slit appearing on upper part of the wall. Peridium 2.5–5 µm (median 4 µm, n=10) thick, composed of hyaline cells of textura angularis. Pseudoparaphyses absent. Asci 50–65 × 12–15 µm (median 58 × 14 µm, n=20), 8-spored, bitunicate, narrowly obvoid, with short furcate pedicel, thickened and rounded at apex. Ascospores 47–54 × 4–5 µm (median 50 × 5 µm, n=40), uniseriate, filiform, 3-septate with narrow rounded ends, guttulate, yellow to chestnut-brown, verruculose or smooth-walled, lacking a sheath. Asexual state: unknown.

Material examined:—COSTA RICA. El Limon: Valle de Puerto La Cruz, Federal District, on leaf of Melastomataceae, 17 January 1928, H. Sydow (286A), (BPI 635922!, holotype).

Notes:—Currently, four Hyalosphaera species are listed in Index Fungorum (2013) and no DNA sequence data is available for any of these species. Hyalosphaera consists of fleshy to gelatinous ascomata whose asci lack an amyloid reaction. Ascomata are possibly apothecioid and ascospores are possibly released by deliquescence of the entire ascomata. Hyalosphaera resembles the unusual genus Corynelia (Benny et al. 1985) by apothecioid ascomata and ascospores released by deliquescence of the entire ascomata. Therefore the genus might be better accommodated in Coryneliales. We however, retain this genus in Dothideomycetes, genera incertae sedis until morphology coupled with molecular data can resolve the correct placement of this unusual genus.

Acknowledgments

MFLU grant number 56101020032 is thanked for supporting studies on Dothideomycetes. We are grateful to the Mushroom Research Foundation, Chiang Rai, Thailand. H.A Ariyawansa and J.C. Kang are grateful to the agricultural science and technology foundation of Guizhou province (Nos. NY[2013]3042), the international collaboration plan of Guizhou province (No. G [2012]7006) and the innovation team construction for science and technology of Guizhou province (No. [2012]4007) from the Science and Technology Department of Guizhou province, China. Hiran Ariyawansa is grateful to A.D Ariyawansa and D.M.K Ariyawansa for their valuable suggestions.

References

Benny, G.L., Samuelson, D.A. & Kimbrough, J.W (1985) Studies on the Coryneliales. II. Taxa parasitic on Podocarpaceae:
http://dx.doi.org/10.3852/mycologia.98.6.1018  
http://dx.doi.org/10.11646/phytotaxa.176.1.8  
http://dx.doi.org/10.1007/s13225-010-0078-5  