Taxonomic novelties in the fern genus *Tectaria* (Tectariaceae)

HUI-HUI DING¹,², YI-SHAN CHAO³ & SHI-YONG DONG¹*

¹ Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
² Graduate University of the Chinese Academy of Sciences, Beijing 100093, China.
³ Division of Botanical Garden, Taiwan Forestry Research Institute, Taipei 10066, Taiwan.
* Corresponding author: dongshiyong@scib.ac.cn

Abstract

The misapplication of the name *Tectaria griffithii* is corrected, which results in the revival of *T. multicaudata* and the proposal of a new combination (*T. multicaudata var. amplissima*) and two new synonyms (*T. yunnanensis* and *T. multicaudata var. singaporeana*). For the reduction of *Psomiocarpa* and *Tectaridium* (previously monotypic genera) into *Tectaria*, *T. macleanii* (new combination) and *T. psomiocarpa* (new name) are proposed as new combinations. In addition, the new name *Tectaria subvariolosa* is put forward to replace a later homonym (*T. stenosemioides*).

Key words: nomenclature, *Psomiocarpa*, taxonomy, *Tectaridium*

Introduction

Tectaria Cavanilles (1799) (Tectariaceae) is a fern genus frequent in tropical regions, with most species growing terrestrially in rain forests. This group is remarkable for its extremely diverse morphology, and the estimated number of species ranges from 150 (Tryon & Tryon 1982; Kramer 1990) to 210 (Holttum 1991a). Holttum (1991a) recognized 105 species in *Tectaria* from Malesia and presumed that SE Asia is its center of origin. In SE Asia outside Malesia, the exact number of species in *Tectaria* remains unknown due to lack of a modern treatment since the first revision for the area (Ching 1931). Though several regional revisions were carried out in last decades (e.g., Tagawa & Iwatsuki 1988, Wang 1999, Chandra 2000), the delimitation of *Tectaria*, especially the species concept, is different from author to author.

During an attempt to revise the taxonomy of *Tectaria* in mainland Asia and to explore the phylogenetic concept of *Tectaria*, we have made some studies of herbarium material and simultaneously conducted phylogenetic analyses based on cpDNA sequences in recent years. Before presenting our molecular results, we thought it necessary to clarify some confusion on species identities.

Taxonomic treatment

Tectaria griffithii (Baker) C.Christensen (1934: 180).

Basionym:—*Nephrodium griffithii* Baker in Hooker & Baker (1867: 300). Type:—MYANMAR. Without locality, without date, Griffith s.n. (holotype K!).

= *Nephrodium yunnanense* Baker (1906: 11); *Tectaria yunnanensis* (Baker) Ching (1931: 24), syn. nov. Type:—CHINA. Yunnan: Mengtze, Red river mountains, without date, Hancock 193 (holotype K!).

Note:—*Tectaria griffithii* has long been confused with *T. multicaudata* (Clarke 1880: 540) Ching (1931: 20). Both Ching (1931) and Holttum (1991a, b) considered the two species as conspecific, albeit Ching (1931)
took T. multicaudata as the accepted name while Holttum (1991a, b) adopted T. griffithii. In fact, T. griffithii and T. multicaudata are distinct in the venation pattern. The holotype of T. griffithii (Griffith s.n., K) is characterized by having fully anastomosing veins, vein areoles mostly with free veinlets included, and lacking costal or costular areoles (Fig. 1a). The holotype of T. multicaudata (Clarke 18427, K) has partly anastomosing veins that form narrow areoles immediately beside costae or costules, without included free veinlets (or rarely occurring) in areoles (Fig. 1b). Noticeably, the feature of venation was clearly stated in the protologues of T. griffithii and T. multicaudata. Baker described the venation of T. griffithii as having “main veins distinct to the edge, with copious free included veinlets” (Hooker & Baker 1867: 300). For the venation of T. multicaudata, Clarke stated that “I can see little difference in the venation and sori between this and Nephrodium ciricatum var. coadunata” (Clarke 1880: 540). As we know, N. ciricatum var. coadunata mentioned by Clarke is nowadays T. coadunata (Smith 1842: 184) C.Christensen (1931: 331), which is characterized by veins forming costal and costular areoles lacking free included veinlets (Holttum 1991a). Unfortunately, later authors ignored the easily recognizable difference of venation between the two species. It is notable that the venation in such two conditions (costal areoles present or not) is the sole difference between two sections of Tectaria proposed by Holttum (1988, 1991a). According to Holttum’s subdivision of Tectaria, T. multicaudata should be grouped into sect. Sagenia, whereas T. griffithii to sect. Tectaria.

Tectaria yunnanensis is included here in T. griffithii. When comparing the holotypes of both species, we found that they are similar in nearly all important characters, such as coarsely dissected fronds, fully anastomosing veins without costal or costular areoles, large sori in two rows between main veins, and sori rather deeply impressed on abaxial surface of lamina. They doubtless represent a single species. It is also noticed that there are no scales above the base of stipes in this species. Scaly stipes, previously considered a diagnostic character of T. griffithii (e.g., Holttum 1988, Tagawa & Iwatsuki 1988, Wang 1999), is actually a characteristic feature of T. multicaudata.

Tectaria macleanii (Copel.) S.Y.Dong, comb. nov.
Basionym:—Tectaridium macleanii Copeland (1926: 329). Type:—PHILIPPINES. Luzon: Cagayan (West Mountain, Claveria), 29 December 1919, Maclean & Catatan 84 (neotype MICH, isoneotype CAS, all original material destroyed in 1945 at PNH).

Note:—Tectaridium Copeland (1926: 329) is a monotypic genus in the Philippines (Holttum 1991a). In our phylogenetic trees based on six cpDNA sequences (Ding et al., unpubl. data), however, the sample of Tectaridium was well resolved in a monophyletic clade with other Tectaria species. So the transfer of Tectaridium macleanii into Tectaria is needed.

Basionym:—Nephrodium multicaudatum Clarke (1880: 540). Type:—BANGLADESH. Sylhet, 30 November 1887, Clarke 18427 (holotype K!).
≡ Tectaria griffithii auct. non (Baker) Christensen (1934: 180), Holttum (1991a: 54), pro parte, excluding the type of T. griffithii.
≡ Tectaria griffithii var. singaporea Holttum (1991b: 551), syn. nov. Type:—SINGAPORE. Bukit Timah, January 1908, Matthew s.n. (holotype K!).

Note:—As stated above, Tectaria multicaudata is a separate species from T. griffithii. They are distinct in the venation pattern, i.e., costal and costular areoles are present in T. multicaudata but absent in T. griffithii (Fig. 1). Holttum (1991b) proposed two varieties under his misunderstood Tectaria griffithii, i.e., T. griffithii var. singaporea and T. griffithii var. amplissima, both having costal and costular areoles of veins. The only difference between the two varieties is “veins all free in lobes of fertile pinnae” in “T. griffithii var. singaporea” but “veins amply anastomosing in fertile fronds” in “T. griffithii var. amplissima” (Holttum 1991b). When carefully comparing a large number of specimens of T. multicaudata in herbaria, we found the
form of veins of “T. griffithii var. singaporeana” falling within the variation range of veins of *T. multicaudata*. Therefore we propose to include *T. griffithii var. singaporeana* in *T. multicaudata*. The holotype of the second variety, *T. griffithii var. amplissima*, however, represents a distinct taxon, which is transferred to *T. multicaudata* as a variety.

Tectaria malayensis (Christ 1907: 187) Copeland (1907: 416) was submerged by Holttum (1991a) under his misapplied *T. griffithii*. It was based on a collection from Luzon (*Loher 858, K!*) with the same venation pattern of *T. multicaudata*. If *T. malayensis* will be eventually proved to be a synonymous name, it should be reduced to *T. multicaudata* instead of *T. griffithii*.

![Comparison of the venation between Tectaria griffithii (Baker) C.Chr. (a) and T. multicaudata (C.B.Clarke) Ching (b). a) Portion of a pinnule on basal pinna, based on the holotype of T. griffithii (Griffith s.n., K); b) portion of a pinnule on basal pinna, based on the holotype of T. multicaudata (Clarke 18427, K).](image)

FIGURE 1. Comparison of the venation between *Tectaria griffithii* (Baker) C.Chr. (a) and *T. multicaudata* (C.B.Clarke) Ching (b). a) Portion of a pinnule on basal pinna, based on the holotype of *T. griffithii* (*Griffith s.n., K*); b) portion of a pinnule on basal pinna, based on the holotype of *T. multicaudata* (*Clarke 18427, K*).

Tectaria multicaudata var. *amplissima* (Holttum) S.Y.Dong, *comb. nov.*

Note:—As Holttum (1991a, b) has pointed out, *T. multicaudata* var. *amplissima* has rather finely dissected fronds with as many as six pairs of pinnules on the basal pinnae. In contrast, the fronds are not so dissected with only one or rarely two pinnules on basal pinna in *T. multicaudata* var. *multicaudata*.

Blocking name:—*Tectaria apiifolia* (Schkuhr 1809: 198) Copeland (1907: 410). Type:—JAMAICA. Without locality, *Sloane s.n.* (holotype? BM!).

Note:—*Psomiocarpa* C.Presl (1851: 161) is currently an accepted genus containing only one species, *P. apiifolia* (Schkuhr) Copeland (1907: 410) (Holttum 1991a). Our molecular analyses (Ding *et al.*, unpubl. data), however, do not support the monophyly of *Psomiocarpa*, as *P. apiifolia* is constantly embedded with *Tectaria* species in all resulting phylogenetic trees. Thus, in taxonomic treatment *P. apiifolia* should be transferred into *Tectaria*. Since an earlier *T. apiifolia* (Schkuhr) Copeland (1907: 410) exists, which is based on material from Jamaica, we have to propose a new name for *P. apiifolia*, *Tectaria psomiocarpa*.
Tectaria subvariolosa S.Y. Dong, nom. nov. for Tectaria stenosemioides Tardieu & C. Christensen (1938: 88).
Type: — VIETNAM. Quang Tri: Vinh Linh (Liem Cong), July 1910, Cadière 14 (holotype P!, isotypes BM!, P!).
Type: — INDONESIA. Sumatra: Sibolangit, 4 June 1917, Lorzing 5161 (holotype BO).

Acknowledgements

We would like to thank the head and the staff for supplying facilities for the senior author during his visit in 2008 to 2012 in these herbaria: BM, BO, E, K, KUN, L, P, PE, and PYU. This study is funded by National Nature Science Foundation of China (grants 31110103911 & 31270258) and by Main Direction Program of Knowledge Innovation of Chinese Academy of Sciences (grant no. KSCX2-EW-Z-1).

References

http://dx.doi.org/10.2307/4118979