A taxonomic note on *Erionota acroleuca* (Wood-Mason & de Nicéville, 1881) stat. rest. (Lepidoptera: Hesperiidae)

GUO-XI XUE¹ & YIK FUI PHILIP LO²

¹School of Food and Bioengineering, Zhengzhou University of Light Industry, No.5 Dongfeng Road, Zhengzhou, Henan, 450002, P. R. China. E-mail: xueguoxi95227@163.com
²Kadoorie Conservation China, Kadoorie Farm and Botanic Garden, Lam Kam Road, Tai Po, New Territories, Hong Kong. E-mail: philiplo@kfbg.org

The purpose of this paper is to restore *Erionota acroleuca* (Wood-Mason & de Nicéville, 1881) as a valid name, and to establish *Erionota acroleuca apicalis* de Jong & Treadaway, 1992 as a new subspecific combination, with its immature biology briefly introduced.

Erionota acroleuca (Wood-Mason & de Nicéville, 1881), stat. rest.

Telegonus acroleucus Wood-Mason & de Nicéville, 1881(Aug.): 143 (original description).
Hesperia hiraca Moore, 1881 (Sept.): 313 (original description).
Teligonus lara Swinhoe, 1890: 365 (original description).
Erionota acroleuca: Watson (1891: 107) (name list); Evans (1941: 159) (description, synonyms, subspecies); Evans (1949: 327) (description, synonyms, subspecies).
Erionota thrax acroleuca: Evans (1927: 440) (description, distribution, synonyms); Evans (1932: 373) (description, distribution, synonyms); Khatri (1993: 184) (name list).

Remarks. The date of publication printed on the paper which originally described *acroleuca* is “August, 1881” (Wood-Mason & de Nicéville 1881 Aug.). While Bridges (1988) recorded the publication date of this name as October, 1881, and that of *hiraca* as September, 1881. According to this record, de Jong & Treadaway (1992) shifted the priority from *acroleuca* to *hiraca*, this treatment continued in their subsequent works (de Jong & Treadaway 2007, 2008), and was also followed by others (e.g. Devyatkin & Monastyrskii 1999; Kitamura 2003; Ek-Amnuay *et al.* 2007; Mohanraj & Veenakumari 2011). But: 1) in a paper issued on 21 December, 1881, Wood-Mason & de Nicéville described *acroleucus* again in a more detailed way under the name “Hesperia acroleuca”, they even gave a one-month priority of their name *acroleucus* (August) over Moore’s *hiraca* (September). 2) the “letter code” assigned to *acroleucus* in Bridges (1988, 1994) is “a”, meaning “available valid species name”, and that to *hiraca* is “c” meaning “synonym”; the name *hiraca* is clearly recorded as “SS: acroleucus (Wood-Mason & de Nicéville, 1881)” with a note “Close, September versus August”, indicating that *hiraca* is a junior synonym of *acroleucus* because of one month behind in publication. 3) The library of the Natural History Museum in London confirmed that the original paper of *acroleucus* was published in August 1881. Thus, according to Chapter 5 (Articles 21 and 22) of the International Code of Zoological Nomenclature (Fourth Edition), the date of publication of the original paper introducing *acroleuca* should be accepted as [31 August] 1881. The nomenclatural act by de Jong & Treadaway (1992), which has caused a misapplication of *hiraca* and threatened the stability of *acroleuca*, should be corrected. Therefore, we restore *acroleuca* to a valid name, and submerge *hiraca* herein.
Erionota acroleuca apicalis de Jong & Treadaway, 1992, new combination
(Figs. 1–4)

Erionota thrax thrax var. apicalis Evans, 1932: 373 (original description).

Material examined. 1♀, Menglun, Mengla County, Xishuangbanna, Yunnan, China, 570m, 7.IX.2004, leg. Y. Qiao (ZULI); 1♂1♀, Nangongshan, Mengla County, Xishuangbanna, Yunnan, China, 1000m, 29.III.2012, leg. Y.F.P. Lo, reared from Caryota ochlandra, emgd. 22.IV.2012, genitalia preparation: YFL h0032 (KFBG); 2♂, Laohutiao Nature Reserve, Napo County, Baise, Guangxi, China, 370m, 24.II.2014, leg. Y.F.P. Lo, pupa from Arenga westerhoutii, emgd. 8.III.2014.

FIGURES 1–4. Erionota acroleuca apicalis from S. Yunnan, China. 1. last instar larva; 2. pupal nest; 3. pupa; 4. male adult, scale bar = 1 cm.

Immature biology. Host plant records are Caryota ochlandra in Yunnan and Arenga westerhoutii in Guangxi, both species belong to the family Arecaceae. Eggs are laid in cluster on the underside of host plant. The larvae on Caryota ochlandra stay on different pinnae of the same secondary rachis and roll the pinnae into a cone-shape shelter. The pupa is pale cream in colour with brown spiracles and is sealed in a cocoon. The proboscis is long, extending just beyond the cremaster. The cremaster is attached to a diffuse silk pad and there is no girdle. The length of pupa is 33mm (n=2). The pupa shelter on Arenga westerhoutii is constructed by rolling the undersurface of the apex half of rachis laterally. Similar to the other two Chinese Erionota species, E. torus and E. grandis, the larva and pupa of E. acroleuca are covered with white waxy powder.

Kitamura (2003) reported the immature stage of E. acroleuca apex (as E. hiraca apex) from Samar Island,
Philippines and the recorded host plant was *Livistonia rotundifolia* (Arecaceae). The second author of the present paper also reared two individuals of *E. acroleuca apicalis* from an unidentified palm in Singapore (unpublished record). Available information reveals that the species is primarily a palm feeder.

Remarks. As an infrasubspecific name, *Erionota thrax thrax* var. *apicalis* Evans, 1932 is nomenclaturally unavailable. de Jong & Treadaway (1992) treated *apicalis* as a good subspecies of *E. hiraca* and used the name “*Erionota hiraca apicalis* Evans, 1932”. This act actually established a new subspecific combination which is an available name. According to Article 45.5.1 of the International Code of Zoological Nomenclature (Fourth Edition), the authorship of this name should be attributed to de Jong & Treadaway (1992).

Acknowledgements. Field work in Guangxi, China was assisted by Napo County Forestry Department. This study is supported by the National Science Foundation of China (41401067) and the Kadoorie Farm and Botanic Garden, Hong Kong.

References

